内蒙古包头市2020届高三数学第一次模拟考试试题文【含解析】_第1页
内蒙古包头市2020届高三数学第一次模拟考试试题文【含解析】_第2页
内蒙古包头市2020届高三数学第一次模拟考试试题文【含解析】_第3页
内蒙古包头市2020届高三数学第一次模拟考试试题文【含解析】_第4页
内蒙古包头市2020届高三数学第一次模拟考试试题文【含解析】_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、内蒙古包头市2020届高三数学第一次模拟考试试题 文(含解析)一、选择题:本大题共12小题,每小题5分,共60分在每个题给出的四个选项中,只有一项是符合题目要求的.1.设集合,则( )A. B. C. D. 【答案】A【解析】【分析】中只有2属于【详解】解:,故选:A【点睛】考查集合的交集运算,是基础题.2.已知是虚数单位,若,则( )A. B. 2C. D. 3【答案】A【解析】【分析】直接将两边同时乘以求出复数,再求其模即可.【详解】解:将两边同时乘以,得故选:A【点睛】考查复数的运算及其模的求法,是基础题.3.设等差数列的前项和为,若,则( )A. 23B. 25C. 28D. 29【答

2、案】D【解析】【分析】由可求,再求公差,再求解即可.【详解】解:等差数列,又,公差为,故选:D【点睛】考查等差数列的有关性质、运算求解能力和推理论证能力,是基础题.4.已知实数满足则的最大值为( )A. 2B. C. 1D. 0【答案】B【解析】【分析】作出可行域,平移目标直线即可求解.【详解】解:作出可行域:由得,由图形知,经过点时,其截距最大,此时最大得,当时,故选:B【点睛】考查线性规划,是基础题.5.已知角的终边与单位圆交于点,则等于( )A. B. C. D. 【答案】B【解析】【分析】先由三角函数的定义求出,再由二倍角公式可求.【详解】解:角的终边与单位圆交于点,故选:B【点睛】考

3、查三角函数的定义和二倍角公式,是基础题.6.下列说法正确的是( )A. “若,则”的否命题是“若,则”B. 在中,“”是“”成立的必要不充分条件C. “若,则”是真命题D. 存在,使得成立【答案】C【解析】【分析】A:否命题既否条件又否结论,故A错.B:由正弦定理和边角关系可判断B错C:可判断其逆否命题的真假,C正确.D:根据幂函数的性质判断D错.【详解】解:A:“若,则”的否命题是“若,则”,故 A错.B:在中,故“”是“”成立的必要充分条件,故B错.C:“若,则”“若,则”,故C正确.D:由幂函数在递减,故D错.故选:C【点睛】考查判断命题的真假,是基础题.7.在直三棱柱中,己知,则异面直

4、线与所成的角为( )A. B. C. D. 【答案】C【解析】【分析】由条件可看出,则为异面直线与所成的角,可证得三角形中,解得从而得出异面直线与所成的角【详解】连接,如图:又,则为异面直线与所成的角.因为且三棱柱为直三棱柱,面,又,解得.故选C【点睛】考查直三棱柱的定义,线面垂直的性质,考查了异面直线所成角的概念及求法,考查了逻辑推理能力,属于基础题8.当时,函数的图象大致是( )A. B. C. D. 【答案】B【解析】由,解得,即或,函数有两个零点,不正确,设,则,由,解得或,由,解得:,即是函数的一个极大值点,不成立,排除,故选B.【方法点晴】本题通过对多个图象的选择考察函数的解析式、

5、定义域、值域、单调性,导数的应用以及数学化归思想,属于难题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意选项一一排除.9.小张家订了一份报纸,送报人可能在早上之间把报送到小张家,小张离开家去工作的时间在早上之间.用表示事件:“小张在离开家前能得到报纸”,设送报人到达的时间为,小张离开家的时间为,看成平面中的点,则用几何概型的公式得到事件的概率等于( )A. B. C. D. 【答案】D【解析】【分析】这是几何概型,

6、画出图形,利用面积比即可求解.【详解】解:事件发生,需满足,即事件应位于五边形内,作图如下:故选:D【点睛】考查几何概型,是基础题.10.过抛物线的焦点且与的对称轴垂直的直线与交于,两点,为的准线上的一点,则的面积为( )A. 1B. 2C. 4D. 8【答案】C【解析】【分析】设抛物线的解析式,得焦点为,对称轴为轴,准线为,这样可设点坐标为,代入抛物线方程可求得,而到直线的距离为,从而可求得三角形面积【详解】设抛物线的解析式,则焦点为,对称轴为轴,准线为,直线经过抛物线的焦点,是与的交点,又轴,可设点坐标为,代入,解得,又点在准线上,设过点的的垂线与交于点,.故应选C.【点睛】本题考查抛物线

7、的性质,解题时只要设出抛物线的标准方程,就能得出点坐标,从而求得参数的值本题难度一般11.在中,为边上的中点,且,则( )A. B. C. D. 【答案】A【解析】【分析】由为边上的中点,表示出,然后用向量模的计算公式求模.【详解】解:为边上的中点,故选:A【点睛】在三角形中,考查中点向量公式和向量模的求法,是基础题.12.设是定义域为的偶函数,且在单调递增,则( )A. B. C. D. 【答案】C【解析】【分析】根据偶函数的性质,比较即可.【详解】解:显然,所以是定义域为的偶函数,且在单调递增,所以故选:C【点睛】本题考查对数的运算及偶函数的性质,是基础题.二、填空题:本大题共4小题,每小

8、题5分,共20分.13.已知点是双曲线渐近线上的一点,则双曲线的离心率为_【答案】【解析】【分析】先表示出渐近线,再代入点,求出,则离心率易求.【详解】解:的渐近线是因为在渐近线上,所以,故答案为:【点睛】考查双曲线的离心率的求法,是基础题.14.已知圆柱的上下底面的中心分别为,过直线的平面截该圆柱所得的截面是面积为36的正方形,则该圆柱的体积为_【答案】【解析】【分析】由轴截面是正方形,易求底面半径和高,则圆柱的体积易求.【详解】解:因为轴截面是正方形,且面积是36,所以圆柱的底面直径和高都是6故答案为:【点睛】考查圆柱的轴截面和其体积的求法,是基础题.15.正项等比数列|满足,且成等差数列

9、,则取得最小值时的值为_【答案】2【解析】【分析】先由题意列出关于的方程,求得的通项公式,再表示出即可求解.【详解】解:设公比为,且,时,上式有最小值,故答案为:2.【点睛】本题考查等比数列、等差数列的有关性质以及等比数列求积、求最值的有关运算,中档题.16.已知函数恰好有3个不同的零点,则实数的取值范围为_【答案】【解析】【分析】恰好有3个不同的零点恰有三个根,然后转化成求函数值域即可.【详解】解:恰好有3个不同的零点恰有三个根,令,在递增;,递减,递增,时,在有一个零点,在有2个零点;故答案为:.【点睛】已知函数的零点个数求参数的取值范围是重点也是难点,这类题一般用分离参数的方法,中档题.

10、三、解答题:本大题共6小题共70分.解答应写出必要的文字说明、证明过程和演算步骤.17.在中,角的对边分别为,且.(1)求角的大小;(2)已知外接圆半径,求的周长.【答案】(1)(2)3+3【解析】【分析】(1)利用余弦的二倍角公式和同角三角函数关系式化简整理并结合范围0A,可求A的值(2)由正弦定理可求a,利用余弦定理可得c值,即可求周长【详解】(1) ,即 又 (2) , ,由余弦定理得 a2b2+c22bccosA, , c0,所以得c=2, 周长a+b+c=3+3【点睛】本题考查三角函数恒等变换的应用,正弦定理,余弦定理在解三角形中的应用,考查了转化思想,属于中档题18.每年的寒冷天气

11、都会带热“御寒经济”,以交通业为例,当天气太冷时,不少人都会选择利用手机上的打车软件在网上预约出租车出行,出租车公司的订单数就会增加.下表是某出租车公司从出租车的订单数据中抽取的5天的日平均气温(单位:)与网上预约出租车订单数(单位:份);日平均气温()642网上预约订单数100135150185210(1)经数据分析,一天内平均气温与该出租车公司网约订单数(份)成线性相关关系,试建立关于的回归方程,并预测日平均气温为时,该出租车公司的网约订单数;(2)天气预报未来5天有3天日平均气温不高于,若把这5天的预测数据当成真实的数据,根据表格数据,则从这5天中任意选取2天,求恰有1天网约订单数不低于

12、210份的概率.附:回归直线的斜率和截距的最小二乘法估计分别为:【答案】(1),232;(2)【解析】【分析】(1) 根据公式代入求解;(2) 先列出基本事件空间,再列出要求的事件,最后求概率即可.【详解】解:(1)由表格可求出代入公式求出,所以,所以当时,.所以可预测日平均气温为时该出租车公司的网约订单数约为232份.(2)记这5天中气温不高于的三天分别为,另外两天分别记为,则在这5天中任意选取2天有,共10个基本事件,其中恰有1天网约订单数不低于210份的有,共6个基本事件,所以所求概率,即恰有1天网约订单数不低于20份概率为.【点睛】考查线性回归系数的求法以及古典概型求概率的方法,中档题

13、.19.如图,点是以为直径的圆上异于、的一点,直角梯形所在平面与圆所在平面垂直,且,.(1)证明:平面;(2)求点到平面的距离.【答案】(1)见解析;(2)【解析】【分析】(1)取的中点,证明,则平面平面,则可证平面.(2)利用,是平面的高,容易求.,再求,则点到平面的距离可求.【详解】解:(1)如图:取的中点,连接、.在中,是的中点,是的中点,平面平面,故平面在直角梯形中, ,且,四边形是平行四边形,同理平面又,故平面平面,又平面平面.(2)是圆的直径,点是圆上异于、的一点,又平面平面,平面平面平面,可得是三棱锥的高线.在直角梯形中,.设到平面的距离为,则,即由已知得,由余弦定理易知:,则解

14、得,即点到平面的距离为故答案为:.【点睛】考查线面平行的判定和利用等体积法求距离的方法,是中档题.20.已知函数的图象在处的切线方程是.(1)求的值;(2)若函数,讨论的单调性与极值;(3)证明:.【答案】(1);(2)单调递减区间为,单调递增区间为,的极小值为,无极大值;(3)见解析.【解析】【分析】(1)切点既在切线上又在曲线上得一方程,再根据斜率等于该点的导数再列一方程,解方程组即可;(2)先对求导数,根据导数判断和求解即可.(3)把证明转化为证明,然后证明极小值大于极大值即可.【详解】解:(1)函数的定义域为由已知得,则,解得.(2)由题意得,则.当时,所以单调递减,当时,所以单调递增

15、,所以,单调递减区间为,单调递增区间为,的极小值为,无极大值.(3)要证成立,只需证成立.令,则,当时,单调递增,当时,单调递减,所以极大值为,即由(2)知,时,且的最小值点与的最大值点不同,所以,即.所以,.【点睛】知识方面,考查建立方程组求未知数,利用导数求函数的单调区间和极值以及不等式的证明;能力方面,考查推理论证能力、分析问题和解决问题的能力以及运算求解能力;试题难度大.21.已知椭圆的右焦点为,过点且与轴垂直的直线被椭圆截得的线段长为,且与短轴两端点的连线相互垂直.(1)求椭圆的方程;(2)若圆上存在两点,椭圆上存在两个点满足:三点共线,三点共线,且,求四边形面积的取值范围.【答案】

16、(1);(2)【解析】【分析】(1)又题意知,及即可求得,从而得椭圆方程.(2)分三种情况:直线斜率不存在时,的斜率为0时,的斜率存在且不为0时,设出直线方程,联立方程组,用韦达定理和弦长公式以及四边形的面积公式计算即可.【详解】(1)由焦点与短轴两端点的连线相互垂直及椭圆的对称性可知,过点且与轴垂直的直线被椭圆截得的线段长为.又,解得.椭圆的方程为(2)由(1)可知圆的方程为,(i)当直线的斜率不存在时,直线的斜率为0,此时(ii)当直线的斜率为零时,.(iii)当直线的斜率存在且不等于零时,设直线的方程为,联立,得,设的横坐标分别为,则.所以,(注:的长度也可以用点到直线的距离和勾股定理计

17、算.)由可得直线的方程为,联立椭圆的方程消去,得设的横坐标为,则.综上,由(i)(ii)()得的取值范围是.【点睛】本题考查椭圆的标准方程与几何性质、直线与圆锥曲线的位置关系的应用问题,解答此类题目,通常利用的关系,确定椭圆方程是基础;通过联立直线方程与椭圆方程建立方程组,应用一元二次方程根与系数,得到目标函数解析式,运用函数知识求解;本题是难题.22.在平面直角坐标系中,以为极点,轴的正半轴为极轴建立极坐标系,已知曲线:,直线的参数方程为(为参数).直线与曲线交于,两点(I)写出曲线的直角坐标方程和直线的普通方程(不要求具体过程);(II)设,若,成等比数列,求的值【答案】(I),;(II).【解析】【分析】(I)利用所给的极坐标方程和参数方程,直接整理化简得到直角坐标方程和普通方程;(II)联立直线的参数方程和C的直角坐标方程,结合韦达定理以及等比数列的性质即可求得答案.【详解】(I)曲线:,两边同时乘以可得,化简得);直线的参数方程为(为参数),可得x-y=-1,得x-y+1=0;(II)将(为参数)代入并整理得韦达定理: 由题意得 即 可得 即 解得【点睛】本题考查了极坐标方程、参数方程与直角坐标和普通方程的互化,以及参数方程的综合知识,结合等比数列,熟练运用知识,属于较易题.23.已知函数.(1)当时,解关于的不等式;(2)若对任意,都存在,使得不等式成立,求实数的取

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论