下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、24.3一元一次方程根与系数的关系中学阶段我们研究的多项式函数中有二次函数,研究的几何图形中有二次曲线。因此一元二次方程便成为了方程中研究的重要内容。一元二次方程有根与系数关系,求根公式向我们揭示了两根与系数间的密切关系,而根与系数还有更进一步的发现,这一发现在数学学科中具有极强的实用价值,本节内容既是代数式、一元一次方程和一元二次方程求根公式等知识的进一步深化,又蕴含有丰富的数学思想方法,也为学生们将来的学习打下了必要的基础。【知识与能力目标】使学生掌握一元二次方程根与系数关系,并初步应用。【过程与方法目标】不断提高学生呃观察分析及推理运用能力。【情感态度价值观目标】使学生进一步了解事物都是
2、相互制约得辩证唯物主义关系以及由特殊到一般在有一班到特殊的思想方法。【教学重点】根与系数的关系与应用。【教学难点】根与系数的发现与准确掌握。 教学过程一、复习回顾1.解一元二次方程的方法有几种?如何选择解一元二次方程的方法?我们说有:今天我们就讲一元二次方程的根与系数关系。2.由因式分解法可知,方程(x-2)(x-3)=0的两根为,而方程(x-2)(x-3)=0可化为x2-5x+6=0的形式,所以方程x2-5x+6=0的两根为。3.完成下列表格:二、思考1.观察上表,方程的两根为x1, x2,则x1+x2, x1x2与方程的系数之间有什么关系?2.语言叙述你发现的规律;3.对于一元二次方程ax
3、2+bx+c=0(a0),b2-4ac0时,设方程的两根分别为x1, x2,你能用式子表示你发现的规律吗?验证:1.用求根公式求解一元二次方程 ax2+bx+c=0(a0)的两根是什么?2.分别计算x1+x2和x1x2的值;3.归纳你验证得到的结论。学生观察方程的特点并归纳总结x1+x2,x1x2与a,b,c的关系板书型如ax2+bx+c=0的方程的两根x1,x2那么x1+x2=-,x1x2=,这就是一元二次方程的根与系数的关系,同学们探索如果已知a,b,c我们可求出x1,x2在a,b,c,x1,x2是否已知3个量就可以求出其他3个量呢,看下面的问题。例题与讲解例、求下列方程两根的和与两根的积
4、。(1)x2+2x-5=0;(2)2x2+x=1思考:需要解方程吗?判断:下面的结论是否正确?1.设x1和x2是一元二次方程x2+5x+6=0的两个根,则x1+x2=5;2.设x1和x2是一元二次方程x2-3x=1的两个根,则x1x2=1;3.设x1和x2是一元二次方程x2+2x+3=0的两个根,则x1x2=3。学生练习1(1)x2-3x+1=0(2)2x2-9x+5=0(3)4x2-7x+1=0(4)2x2+3x=0(5)6x2-1=0(6)3x2-2x=-2(7)3x2=1教师讲解同时归纳运用根与系数应注意哪些。1、化成一般式;2、二次项系数化1;3、不要漏掉“。学生练习已知方程3x2-19x+m=0的一根是1,求另一根及m的值。(学生板演)变式与练习例1 变式:设x1,x2是方程x22x50的两个根,不解方程,求下列各式的值。(1) (2) (3) (4) 例2已知方程的一个根是1,求它的另一个根及m 的值。练习3 已知方程x2-(k+1)x+3k=0的一个根是2,求它的另一个根及k的值。 五、课堂小结1、一元二次方程根与系数关系2、利用此关系解决有关一元二次方程根与系数问题时,注意两个隐含条件:(1)化为一般形式ax2+bx+c=0(a0)(2)根的判别式b2-4ac0拓展提高:设x1,x2是方程x2-2(k-1)x+k2=0的两个实数根,且x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO/IEC 24760-1:2019 EN IT Security and Privacy - A framework for identity management - Part 1: Terminology and concepts
- 【正版授权】 ISO/IEC 12792:2025 FR Information technology - Artificial intelligence (AI) - Transparency taxonomy of AI systems
- 【正版授权】 ISO 15614-9:2025 EN Specification and qualification of welding procedures for metallic materials - Welding procedure test - Part 9: Underwater hyperbaric wet welding
- 不动产信托合同范本
- 柏木种植转让协议书
- 江西吉安市吉州区融媒体中心招聘易考易错模拟试题(共500题)试卷后附参考答案
- 服装就业安置协议书
- 汕头市潮南区事业单位招考专业技术人员易考易错模拟试题(共500题)试卷后附参考答案
- 儿童衣服置换协议书
- 公司租赁酒店协议书
- 中西医对比教学课件
- 雨污管道检测施工方案
- 2025秋人教版八年级上册英语试卷 Unit 6 单元考试试卷【原卷+听力音频+听力原文+答案】
- 4.2 用方向与距离确定物体的位置 课件 浙教版八年级上册
- 菌种管理规定
- 2025年中考数学真题知识点分类汇编之整式(一)
- 感染性心内膜炎诊疗指南
- 口腔医学技术专业职业规划
- (标准)驿站转让合同协议书样本
- 2024版电网典型设计10kV配电站房分册
- 呼吸系统感染健康教育
评论
0/150
提交评论