二项式定理典型例题_第1页
二项式定理典型例题_第2页
二项式定理典型例题_第3页
二项式定理典型例题_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、.二项式定理典型例题-例1 在二项式的展开式中,前三项的系数成等差数列,求展开式中所有有理项分析:本题是典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公式解决解:二项式的展开式的通项公式为:前三项的得系数为:,由已知:,通项公式为为有理项,故是4的倍数,依次得到有理项为例2 求展开式中的系数分析:不是二项式,我们可以通过或把它看成二项式展开解:方法一: 其中含的项为含项的系数为6例3 求证:(1);(2)分析:二项式系数的性质实际上是组合数的性质,我们可以用二项式系数的性质来证明一些组合数的等式或者求一些组合数式子的值解决这两个小题的关键是通过组合数公式将等式左边各项变化的等数固

2、定下来,从而使用二项式系数性质解:(1)左边 右边(2)左边 右边例4展开例5若将展开为多项式,经过合并同类项后它的项数为()A11B33C55D66分析:看作二项式展开解:我们把看成,按二项式展开,共有“项”,即这时,由于“和”中各项的指数各不相同,因此再将各个二项式展开,不同的乘积()展开后,都不会出现同类项下面,再分别考虑每一个乘积()其中每一个乘积展开后的项数由决定,而且各项中和的指数都不相同,也不会出现同类项故原式展开后的总项数为,应选D例6若的展开式的常数项为,求例7的展开式的第3项小于第4项,则的取值范围是_分析:首先运用通项公式写出展开式的第3项和第4项,再根据题设列出不等式即可解:使有意义,必须;依题意,有,即()解得的取值范围是 应填:例8的展开式中第项与第项的系数相等,求展开式中二项式系数最大的项和系数最大的项分析:根据已知条件可求出,再根据的奇偶性;确定二项式系数最大的项解:,依题意有的展开

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论