版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、,第十章,积分学 定积分二重积分三重积分,积分域 区间域 平面域 空间域,曲线积分,曲线域,曲面域,曲线积分,曲面积分,对弧长的曲线积分,对坐标的曲线积分,对面积的曲面积分,对坐标的曲面积分,曲面积分,曲线积分与曲面积分,第一节,一、对弧长的曲线积分的概念与性质,二、对弧长的曲线积分的计算法,机动 目录 上页 下页 返回 结束,对弧长的曲线积分,第十章,内容小结,1. 定义,2. 性质,( l 曲线弧 的长度),机动 目录 上页 下页 返回 结束,3. 计算, 对光滑曲线弧, 对光滑曲线弧, 对光滑曲线弧,机动 目录 上页 下页 返回 结束,如果曲线 L 的方程为,则有,如果方程为极坐标形式:
2、,则,推广: 设空间曲线弧的参数方程为,则,机动 目录 上页 下页 返回 结束,其中L1是曲线L在x轴右侧的那一部分;关于y轴对称也有类似结论。,对称性的应用: 1.如果曲线关于x轴对称,函数f(x,y)关于y为奇偶函数,则,2.设f(x,y)在曲线连续,曲线L关于原点对称,函数f(x,y)关于(x,y)为奇偶函数,则,其中L1是曲线L在右半平面或上半平面的那一部分。,例1. 计算,其中L为双纽线,解: 在极坐标系下,它在第一象限部分为,利用对称性 , 得,机动 目录 上页 下页 返回 结束,例2. 计算,其中为球面,解:,化为参数方程,则,机动 目录 上页 下页 返回 结束,思考与练习,已知
3、椭圆,周长为a , 求,提示:,原式 =,利用对称性,机动 目录 上页 下页 返回 结束,第二节,1、对坐标的曲线积分的概念 与性质,2、 对坐标的曲线积分的计算法,3、两类曲线积分之间的联系,机动 目录 上页 下页 返回 结束,对坐标的曲线积分,第十章,1. 定义,性质,(1) L可分成 k 条有向光滑曲线弧,(2) L 表示 L 的反向弧,对坐标的曲线积分必须注意积分弧段的方向!,机动 目录 上页 下页 返回 结束,2. 计算, 对有向光滑弧, 对有向光滑弧,机动 目录 上页 下页 返回 结束,3、两类曲线积分之间的联系,设有向光滑弧 L 以弧长为参数 的参数方程为,已知L切向量的方向余弦
4、为,则两类曲线积分有如下联系,机动 目录 上页 下页 返回 结束,第三节,一、格林公式,二、平面上曲线积分与路径无关的 等价条件,机动 目录 上页 下页 返回 结束,格林公式及其应用,第十章,区域 D 分类,单连通区域 ( 无“洞”区域 ),多连通区域 ( 有“洞”区域 ),域 D 边界L 的正向: 域的内部靠左,定理1. 设区域 D 是由分段光滑正向曲线 L 围成,则有,( 格林公式 ),函数,在 D 上具有连续一阶偏导数,一、 格林公式,机动 目录 上页 下页 返回 结束,二、平面上曲线积分与路径无关的等价条件,定理2. 设D 是单连通域 ,在D 内,具有一阶连续偏导数,(1) 沿D 中任
5、意光滑闭曲线 L , 有,(2) 对D 中任一分段光滑曲线 L, 曲线积分,(3),(4) 在 D 内每一点都有,与路径无关, 只与起止点有关.,函数,则以下四个条件等价:,在 D 内是某一函数,的全微分,即,机动 目录 上页 下页 返回 结束,说明:,根据定理2 , 若在某区域内,则,2) 求曲线积分时, 可利用格林公式简化计算,3) 可用积分法求d u = P dx + Q dy在域 D 内的原函数:,及动点,或,则原函数为,若积分路径不是闭曲线, 可添加辅助线;,取定点,1) 计算曲线积分时, 可选择方便的积分路径;,定理2 目录 上页 下页 返回 结束,真题研讨,第四节,一、对面积的曲
6、面积分的概念与性质,二、对面积的曲面积分的计算法,机动 目录 上页 下页 返回 结束,对面积的曲面积分,第十章,1. 定义:,2. 计算: 设,则,(曲面的其他两种情况类似),注意利用球面坐标、柱面坐标、对称性、重心公式,简化计算的技巧.,机动 目录 上页 下页 返回 结束,对面积的曲面积分的概念、性质和计算,对称性的应用,例3. 计算,其中 是球面,利用对称性可知,解: 显然球心为,半径为,利用重心公式,机动 目录 上页 下页 返回 结束,第五节,一、有向曲面及曲面元素的投影,二、 对坐标的曲面积分的概念与性质,三、对坐标的曲面积分的计算法,四、两类曲面积分的联系,机动 目录 上页 下页 返
7、回 结束,对坐标的曲面积分,第十章,其方向用法向量指向,方向余弦, 0 为前侧 0 为后侧,封闭曲面, 0 为右侧 0 为左侧, 0 为上侧 0 为下侧,外侧 内侧, 设 为有向曲面,侧的规定,指定了侧的曲面叫有向曲面,表示 :,其面元,在 xoy 面上的投影记为,的面积为,则规定,类似可规定,机动 目录 上页 下页 返回 结束,引例中, 流过有向曲面 的流体的流量为,称为Q 在有向曲面上对 z, x 的曲面积分;,称为R 在有向曲面上对 x, y 的曲面积分.,称为P 在有向曲面上对 y, z 的曲面积分;,若记 正侧的单位法向量为,令,则对坐标的曲面积分也常写成如下向量形式,机动 目录 上
8、页 下页 返回 结束,时,,(上侧取“+”, 下侧取“”),类似可考虑在 yoz 面及 zox 面上的二重积分转化公式 .,机动 目录 上页 下页 返回 结束, 若,则有, 若,则有,(前正后负),(右正左负),机动 目录 上页 下页 返回 结束,性质:,联系:,机动 目录 上页 下页 返回 结束,例5. 设S 是球面,的外侧 , 计算,解: 利用轮换对称性, 有,机动 目录 上页 下页 返回 结束,例6. 计算曲面积分,其中,解: 利用两类曲面积分的联系, 有, 原式 =,旋转抛物面,介于平面 z= 0,及 z = 2 之间部分的下侧.,机动 目录 上页 下页 返回 结束,原式 =,机动 目
9、录 上页 下页 返回 结束,一、高斯 ( Gauss ) 公式,定理1. 设空间闭区域 由分片光滑的闭曲, 上有连续的一阶偏导数 ,函数 P, Q, R 在,面 所围成, 的方向取外侧,则有,(Gauss 公式),高斯 目录 上页 下页 返回 结束,1. 高斯公式及其应用,公式:,应用:,(1) 计算曲面积分,(非闭曲面时注意添加辅助面的技巧),(2) 推出闭曲面积分为零的充要条件:,机动 目录 上页 下页 返回 结束,例7. 利用Gauss 公式计算积分,其中 为锥面,解: 作辅助面,取上侧,介于 z = 0 及,z = h 之间部分的下侧.,所围区域为,则,机动 目录 上页 下页 返回 结
10、束,利用重心公式, 注意,机动 目录 上页 下页 返回 结束,一、 斯托克斯( Stokes ) 公式,定理1. 设光滑曲面 的边界 是分段光滑曲线,(斯托克斯公式),个空间域内具有连续一阶偏导数, 的,侧与 的正向符合右手法则,在包含 在内的一,则有,简介 目录 上页 下页 返回 结束,为便于记忆, 斯托克斯公式还可写作:,或用第一类曲面积分表示:,定理1 目录 上页 下页 返回 结束,例9. 为柱面,与平面 y = z 的交线,从 z,轴正向看为顺时针, 计算,解: 设为平面 z = y 上被 所围椭圆域 ,且取下侧,利用斯托克斯公式得,则其法线方向余弦,公式 目录 上页 下页 返回 结束,2. 通量与散度,设向量场,P, Q, R, 在域G内有一阶 连续,偏导数,则,向量场通过有向曲面 的通量为,G
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 数据要素服务提供商资格认证规则
- 通信协议规范及应用指南
- 2026年体育单招游泳接力配合评估试题
- 汽车美容师职业技能大赛试题及答案
- 2025年初中美术动漫设计与制作试题
- 音乐节奏感知能力测试题库考试及答案
- 全国初中生物人体生理学要点考试及答案
- 企业合同管理指南
- 旅游景区餐饮服务规范
- 亲水平台钢结构专项施工方案
- 《简爱》每一章节内容概括
- 2026湖南衡阳日报社招聘事业单位人员16人备考题库带答案详解
- 糖尿病足诊疗指南
- 20以内的加减法练习题库
- 小儿发热护理讲课
- 皮肤瘙痒症状病因诊断筛查
- 2025年江西省中考数学试卷真题(含标准答案及解析)
- 2025年高考英语复习知识清单(全国)专题45 应用文写作11组34个满分句式68个真题例句 (讲案)解析版
- 高中音乐鉴赏第六单元《中国影视音乐》 人音版
- 2025年云南昆明桥隧管理有限公司招聘笔试参考题库含答案解析
- 《华住酒店集团》课件
评论
0/150
提交评论