圆锥曲线离心率的取值范围的解题方法_第1页
圆锥曲线离心率的取值范围的解题方法_第2页
圆锥曲线离心率的取值范围的解题方法_第3页
圆锥曲线离心率的取值范围的解题方法_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

圆锥曲线离心率的取值范围的解题方法一、利用曲线的范围,建立不等关系例1 设椭圆的左右焦点分别为、,如果椭圆上存在点P,使,求离心率e的取值范围。解:设因为,所以 将这个方程与椭圆方程联立,消去y,可解得二、利用曲线的几何性质数形结合,构造不等关系例2直线L过双曲线的右焦点,斜率k=2。若L与双曲线的两个交点分别在左、右两支上,求双曲线离心率的取值范围。解:如图1,若,则L与双曲线只有一个交点;若,则L与双曲线的两交点均在右支上, 例3. 已知F1、F2分别是双曲线的左、右焦点,过F1且垂直于x轴的直线与双曲线交于A、B两点。若ABF2是锐角三角形,求双曲线的离心率的取值范围。解:如图2,因为ABF2是等腰三角形,所以只要AF2B是锐角即可,即AF2F145。则 三、利用定义及圆锥曲线共同的性质,寻求不等关系例4已知双曲线的左右焦点分别为、,点P在双曲线的右支上,且,求此双曲线的离心率e的取值范围。解:因为P在右支上,所以 又 得 所以 又 所以 例5已知双曲线的左、右焦点分别是F1、F2,P是双曲线右支上一点,P到右准线的距离为d,若d、|PF2|、|PF1|依次成等比数列,求双曲线的离心率的取值范围。解:由题意得因为,所以,从而,。又因为P在右支上,所以。 。 四、利用判断式确定不等关系例6例1的解法一:解:由椭圆定义知例7设双曲线与

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论