 
         
         
         
         
        版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、GARCH类模型建模的Eviews操作,Page 2,实例操作,3,Eviews简介,Eviews是Econometrics Views的缩写,直译为计量经济学观察,本意是对社会经济关系与经济活动的数量规律,采用计量经济学方法与技术进行“观察”,称为计量经济学软件包。 使用Eviews可以迅速地从数据中寻找出统计关系,并用得到的关系去预测数据的未来值,Eviews简介,Eviews的应用范围包括,应用经济计量学 总体经济的研究和预测 金融数据分析 销售预测及财务分析 成本分析和预测 蒙地卡罗模拟 经济模型的估计和仿真 利率与外汇预测等等,Eviews主要功能: 操作灵活简便,可采用多种操作方式
2、进行各种计量分析和统计分析,使数据管理、处理和分析简单方便。其主要功能有: (1)采用统一的方式管理数据,通过对象、视图和过程实现对数据的各种操作; (2)输入、扩展和修改时间序列数据或截面数据,依据已有序列按任意复杂的公式生成新的序列,Eviews主要功能,3)计算描述统计量:相关系数、协方差、自相关系数、互相关系数和直方图; (4)进行T 检验、方差分析、协整检验、Granger 因果检验; (5)执行普通最小二乘法、带有自回归校正的最小二乘法、两阶段最小二乘法和三阶段最小二乘法、非线性最小二乘法、广义矩估计法、ARCH 模型估计法等; (6)对二择一决策模型进行Probit、logit
3、和Gompit 估计,Page 7,Eviews主要功能,7)对联立方程进行线性和非线性的估计; (8)估计和分析向量自回归系统; (9)多项式分布滞后模型的估计; (10)回归方程的预测; (11)模型的求解和模拟; (12)数据库管理; (13)与外部软件进行数据交换,时间序列建模步骤,实例操作,3,实例操作,上证180指数收益率波动率分析,本次选取了上证180指数于2008年8月1日到2010年11月3日的收盘价,共548个观测值。并以此建立序列p,进而构建其对数收益率序列r,对序列r建立条件异方差模型,并研究其收益波动率,上证180指数:是上海证券交易所对原上证30指数进行了调整并更名
4、而成的,其样本股是在所有A股股票中抽取最具市场代表性的180种样本股票。它反映上海证券市场的概貌和运行状况,能作为投资评价尺度及金融衍生产品基础的基准指数。 数据来源:上海证券报 http:/,Page 13,建立新的工作文件 选择菜单File/New/workfile,则出现数据的频率对话框。如图,Page 14,可在 Workfilefrequency中选择数据的频率,可选的频率包括年度、半年、季度、月度、星期、天(每周5天、每周7天)以及非时间序列或不规则数据。 可在Start date文本框中输入起始日期,End date文本框中输入终止日期,年度与后面的数字用:分隔,Page 15,
5、具体的日期的表示法为: 年度:二十世纪可用两位数,其余全用四位数字;如:从1999到2009,只需在Start date中输入1999。End date中输入2009即可。 半年:年后加1或2;如:从1999年上半年到2009年下半年,在Start date中输入1999:1 。End date中输入2009:2。 季度:年后加1-4;从1999年第一季度到2009年第三季度,在Start date中输入1999:1 。End date中输入2009:3,Page 16,月度:年后加1-12;如:从1999年1月到2009年12月,在Start date中输入1999:1 。End date中
6、输入2009:12。 周:月/周/年;如:从2007年1月第一周到2009年1月第四周,在Start date中输入1/1/2007。End date中输入1/4/2009 天:月/日/年;如:从2008年3月5日到2009年8月20日,在Start date中输入3/5/2008。End date中输入8/20/2009. 非时间序列或不规则数据:输入样本个数。如:样本数为200,在Start date中输入1 。End date中输入200,Page 17,本案例中选择最后一个integer-data, Start date中输入1 ;End date中输入548,建立序列 可以采用直接输
7、入法、复制法、导入法。 直接输入法/复制法:点击EViews主菜单中的Objects/New Object,出现如图所示的对话框,点击OK后就可以直接输入收集到的数据或是复制得到序列,导入法:把存于EXCEL等文档的数据导入序列中。 选择主菜单中File/Import/Read Text-Lotus-Excel,找到已经存好的数据Excel文件,点击“打开”后,出现如图所示对话框,在Names for series or Number if named in file选框中序列名称p,即将数据导入了该序列p,Page 20,建立对数收益率序列 点击Eviews中workfile菜单中的Obje
8、cts/Generate Series,键入一个表达式,可形成一个新的序列。 常使用到表达式:D代表差分;Log代表取对数;Exp代表取指数;2代表平分,Page 21,本案例中对序列p的数据取对数然后差分,得到新的序列r,代表对数收益率。输入的表达式为r=dlog(p),如图所示,得到工作表,如图所示: 至此完成数据导入工作,序列描述性分析,1.画时间序列图 双击序列r,在视图中点击View-graph-line,得到对数收益率rt的时间序列图如下,Page 24,从上证180指数对数收益率序列r的线性图中,可观察到对数收益率波动的“集群”现象:波动在一些时间段内较小(例如从第150个观测值
9、到第200个观测值),在有的时间段内非常大(例如从第40个数据到第100个数据,Page 25,然后在视图中点击view-descriptive statisticshistogram and stats就得到了对数收益率的柱形统计图,如下,Page 26,由图可知,上证能源指数对数收益率序列均值(Mean)为0.000256,标准差(Std. Dev.)为0.001426,偏度(Skewness)为-0.141,小于0,说明序列分布有长的左拖尾。峰度(Kurtosis)为4.596,高于于正态分布的峰度值3,说明收益率序列具有尖峰和厚尾的特征。JarqueBera统计量为59.85,P值为0
10、.00000,拒绝该对数收益率序列服从正态分布的假设,Page 27,考察序列的平稳性,点击View-Unit Root Test,Test Type选择Augmented Dickey-Fuller,Page 28,得到ADF检验的结果如下,t统计量的值-22.88,对应P值接近0,表明序列r 平稳,Page 29,序列自相关和偏自相关检验 在视图中点击View-correlogram,在Lags to include中键入12,然后点击ok,就得到了对数收益率的自相关函数分析图,Page 30,Page 31,从图中可以看出,序列的自相关和偏自相关系数均落入两倍的估计标准差内,且Q统计量的
11、对应的p值均大于置信度0.05,故序列在5的显著性水平上不存在显著的相关性,Page 32,回归模型的建立 由于序列不存在显著的相关性,因此将均值方程设定为白噪声。 设立模型: rt=t+t,Page 33,将r去均值化,得到w: 操作为: Objects/Generate Series输入 w=r-0.000256 再看w序列的描述性统计,Page 34,检验ARCH效应,检验ARCH效应有两种方法:LM法(拉格朗日乘数检验法)和对残差的平方相关图检验。 本案例中由于没有对ARMA建模,E-views中没有直接的LM法,所以采用第二种方法。首先建立w的平分方程z,在Objects/Gener
12、ate Series输入z= w2,Page 35,然后在视图中点击view-correlogram,然后点击ok,就得到了对数收益率的自相关函数分析图,如图所示:序列存在自相关,所以有ARCH效应,Page 36,建立GARCH类模型,1)GARCH模型 (2)T-GARCH模型 (3)E-GARCH模型,Page 37,常用的GARCH模型包括GARCH(1,1),GARCH(1,2),GARCH(2,1)我们分别用多个模型建模,以下以GARCH(1,1)为例,Page 38,点击主菜单Quick/Estimate Equation,得到如下对话框,在 Method选择GARCH,在Mea
13、n equation框中输入w,ARCH和GARCH处都选择1,点击确定,Page 39,1)GARCH(1,1,Page 40,1)GARCH(2,1,Page 41,1)GARCH(1,2,Page 42,基于以上三个模型的比较,GARCH(1,1)所有的系数都通过t检验,效果最好!再考虑T-GARCH和E-GARCH再分别进行建模,Page 43,T-GARCH的操作为: 点击主菜单Quick/Estimate Equation,得到如下对话框,在 Method选择GARCH/TGARCH,再将Threshold数值输入1,点击确定。如下图,Page 44,T-GARCH(1,1,E-G
14、ARCH的操作为: 点击主菜单Quick/Estimate Equation,得到如下对话框,在 Method选择EGARCH,再将Threshold数值输入0,点击确定。如下图,Page 46,Page 47,EGARCH(1,1)模型的参数均显著,说明序列具有杠杆性,可以进一步加入“ARCH-M”检验,Page 48,系数不显著,(用Variance时系数一样不显著),说明不存在ARCH-M过程,Page 49,模型验证,对建立的EARCH(1,1)模型进行残差ARCH效应检验,点击EARCH(1,1)结果输出窗口View /Residual Test /ARCH LM TestLag=滞后阶数,可以分别取1,4,8,12;以lag=4为例,输出结果如下所示,Page 50,各种lag值情形下,F统计量均不显著,说明模型已经不存在ARCH效应,建立的EGARCH(1,1)模型如下,Page 51,由于之前对r的描述统计中发现统计的正态分布检验没有通过,可以试图做残差服从t分布和GED分布的E-views建模,Page 52,假设残差服从t分布操作过程:Quick/Estimate Equation,得到如下对话框,在 Method
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 创意媒体营销计划
- 精准温控酸奶机行业跨境出海项目商业计划书
- 传动装置优化策划
- 产品营销推广策略制定
- 病毒免疫学研究方案
- 仓库盘点预案输出
- 酒店人才招聘与培训方案设计
- 幼儿园以内的按数取物教案(2025-2026学年)
- 2025年全球气候变化的适应性策略与技术创新
- 2025年全球气候变化的气候模型优化
- 2024年消防救援支队政府专职消防员招聘考试笔试试题(含答案)
- 《建筑给排水与供暖工程》课件
- 新22J01 工程做法图集
- 超星尔雅学习通《马克思主义的时代解读(复旦大学)》2025章节测试附答案
- 中考英语五选五课件
- 《建筑结构健康监测技术》课件
- 美团运营知识培训课件
- 生产车间安全管理处罚制度
- 人教版(新教材)高中物理选择性必修2学案1:4 1 电磁振荡
- 《马克思主义中国化》课件
- 2024-2030年中国酸枣汁行业销售形势及竞争趋势预测报告
 
            
评论
0/150
提交评论