版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、二次函数分类汇编练习题一、顶点、平移1、抛物线y(x2)23的顶点坐标是( )A(2,3) B(2,3) C(2,3) D(2,3)2、抛物线的顶点坐标是( )A(1,0) B(1,0) C(2,1) D(2,1)3、抛物线y=x2-2x-3的顶点坐标是 . 4、下列二次函数中,图象以直线x = 2为对称轴,且经过点(0,1)的是( )Ay = (x 2)2 + 1 By = (x + 2)2 + 1 Cy = (x 2)2 3 Dy = (x + 2)2 35、将二次函数化为的形式,则 6、二次函数有( )A 最大值B 最小值C 最大值D 最小值7、由二次函数,可知( )A其图象的开口向下
2、B其图象的对称轴为直线C其最小值为1 D当时,y随x的增大而增大二、a、b、c与图象的关系1、如图为抛物线的图像,A、B、C 为抛物线与坐标轴的交点,且OA=OC=1, 则下列关系中正确的是 ( ) Aab=1 B ab=1 C b2aD ac0 B b0 C c0 D abc03、如图所示的二次函数的图象中,刘星同学观察得出了下面四xy-111条信息:(1);(2)c1;(3)2ab0;(4)a+b+c0时y值随x值增大而减小的是( )Ay = x2 By = x C y = xDy = 2、二次函数的图象如图所示当y0时,自变量x的取值范围是( )A1x3Bx1C x3Dx1或x33、已知
3、二次函数的图象(0x3)如图所示关于该函数在所给自变量取值范围内,下列 说法正确的是( ) A有最小值0,有最大值3 B有最小值1,有最大值0 C有最小值1,有最大值3 D有最小值1,无最大值4、已知函数的图象与x轴有交点,则k的取值范围是A.B.C.且D.且5、如图,抛物线y = x2 + 1与双曲线y = 的交点A的横坐标是1,则关于x的不等式 + x2 + 1 1 Bx 1 C0 x 1 D1 x 06、 (2011浙江省舟山,第15题,4分)如图,已知二次函数的图象经过点(1,0),(1,2),当随的增大而增大时,的取值范围是 四、函数图象综合1、(2011山东德州,第6题,3分)已知
4、函数(其中)的图象如下面图所示,则函数的图象可能正确的是( )第6题图yx11O(A)yx1-1O(B)yx-1-1O(C)1-1xyO(D)2、(2011安徽芜湖,第10题,4分)二次函数的图象如图所示,则反比例函数与一次函数在同一坐标系中的大致图象是( )3、(2011山东聊城,第9题,3分)下列四个函数图象中,当x0时,函数值y随自变量x的增大而减小的是( )五、对称性、二次函数与一元二次方程的关系1、(07江西)已知二次函数的部分图象如右图所示,则关于的 一元二次方程的解为 2、(2011浙江省嘉兴,第15题,5分)如图,已知二次函数的(第2题)(1,-2)-1ABC图象经过点(-1,
5、0),(1,-2),该图象与x轴的另一个交点为C,则AC长为 六、解答题1、(2009山东泰安)如图,OAB是边长为2的等边三角形,过点A的直线 (1) 求点E的坐标;(2) 求过 A、O、E三点的抛物线解析式;(3) 若点P是(2)中求出的抛物线AE段上一动点(不与A、E重合),设四边形OAPE的面积为S,求S的最大值。2、(2011贵州贵阳,第21题,10分)如图所示,二次函数y=-x2+2x+m的图象与x轴的一个交点为A(3,0),另一个交点为B,且与y轴交于点C(1)求m的值;(3分)(2)求点B的坐标;(3分) (3)该二次函数图象上有一点D(x,y)(其中x0,y0),使SABD=
6、SABC,求点D的坐标(4分)3、(2011贵州安顺,第27题,12分)如图,抛物线y=x2+bx2与x轴交于A、B两点,与y轴交于C点,且A(一1,0)第27题图(1)求抛物线的解析式及顶点D的坐标;(2)判断ABC的形状,证明你的结论;(3)点M(m,0)是x轴上的一个动点,当CM+DM的值最小时,求m的值4、(2011湖南湘潭市,第25题,10分)如图,直线交轴于A点,交轴于B点,过A、B两点的抛物线交轴于另一点C(3,0). (1)求抛物线的解析式;OCBA(2)在抛物线的对称轴上是否存在点Q,使ABQ是等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.5、(2008四
7、川巴中)王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线,其中(m)是球的飞行高度,(m)是球飞出的水平距离,结果球离球洞的水平距离还有2m。(1)请写出抛物线的开口方向、顶点坐标、对称轴。(2)请求出球飞行的最大水平距离;(3)若王强再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球飞行路线应满足怎样的抛物线,求出其解析式。6、(2012佳木斯)如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交于点A(2,0)。(1)求此抛物线的解析式;(2)写出顶点坐标及对称轴;(3)若抛物线上有一点B,且SOAB=3,求点B的坐标。7、(2012连云港)如图,抛物线y=x2+
8、bx+c与x轴交于A、B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3,(1)求抛物线所对应的函数解析式;(2)求ABD的面积;(3)将AOC绕点C逆时针旋转90,点A对应点为点G,问点G是否在该抛物线上?请说明理由。8、(2012江西)如图,已知二次函数L1:y=x24x+3与x轴交于A、B两点(点A在点B的左边),与y轴交于点C。(1)写出A、B两点的坐标;(2)二次函数L2:y=kx24kx+3k(k0),顶点为P。直接写出二次函数L2与二次函数L1有关图象的两条相同的性质;是否存在实数k,使ABP为等边
9、三角形?如果存在,请求出k的值;如不存在,请说明理由;若直线y=8k与抛物线L2交于E、F两点,问线段EF的长度是否会发生变化?如果不会,请求出EF的长度;如果会,请说明理由。9、如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=3。(1)求抛物线的解析式;(2)若点D(2,2)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P,使得BDP的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由。销售单价x(元/件)2030405060每天销售量(y件)50040030020010010、某体育用品商店购进一批滑板,每件进价为100元,售价为130元,
10、每星期可卖出80件。商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件。(1)求商家降价前每星期的销售利润为多少元?(2)降价后,商家要使每星期的销售利润最大,应将售价定为多少元?最大销售利润是多少?11、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台。 (1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围) (2)商场要想在这种冰箱销售中每天盈利4800元,又要使百姓得
11、到实惠,每台冰箱应降价多少元? (3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?12、体育测试时,初三一名高个学生推铅球,已知铅球所经过的路线为抛物线的一部分,根据关系式回答:(1)该同学的出手最大高度是多少?(2)铅球在运行过程中离地面的最大高度是多少?(3)该同学的成绩是多少?13、张大爷要围成一个矩形花圃,花圃的一边利用足够长的墙另三边用总长为32米的篱笆恰好围成。围成的花圃是如图所示的矩形ABCD。设AB边的长为x米,矩形ABCD的面积为S平方米。 (1)求S与x之间的函数关系式(不要求写出自变量x的取值范围); (2)当x为何值时,S有最大值?并求出最大值。14、(2012大理)如图,点A、B、D、E在O上,弦AE、BD的延长线相交于点C。若AB是O的直径,D是BC的中点。(1)试判断AB、AC之间的大小关系,并给出证明;(2)在上述题设条件下,ABC还需满足什么条件,点E才一定是AC的中点?(直接写出结论)第23题O15、有5个质地大小相同的小球上分别标有数字,先将标有数字的小球放在第一个不透明的盒子里,再将其余小球放在第二个不透明的盒子里,现从这两个盒子里各随机取出一个小球。(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖北省十堰市普通高中教联体2025-2026学年高一上学期12月月考语文试题
- 2025年办公楼外墙瓷砖铺贴合同协议
- 2025 小学六年级语文上册童话角色设定技巧课件
- 2025年IT设备维护服务协议
- 安徽省2025九年级英语全册Unit3CouldyoupleasetellmewheretherestroomsareSectionB课件新版人教新目标版
- 教师编面试题目范围及答案
- 深度解析(2026)《GBT 34387-2017制冷剂用阀门通 用性能试验方法 》
- 深度解析(2026)《GBT 35319-2025物联网 系统接口要求》(2026年)深度解析
- 2009年7月国开行管本科《西方行政学说》期末纸质考试试题及答案
- 深度解析(2026)《GBT 34153-2017右旋烯丙菊酯原药》
- 2026年宁夏贺兰工业园区管委会工作人员社会化公开招聘备考题库有答案详解
- 2024年中储粮集团江苏分公司招聘真题
- 期末模拟试卷三(试卷)2025-2026学年六年级语文上册(统编版)
- 2025年度工作队队员个人驻村工作总结
- 保险中介合作协议
- 骨外科护理年度工作总结范文
- 东北大学《大学物理》2024 - 2025 学年第一学期期末试卷
- 中翼航空投资有限公司(北京航食)2026届高校毕业生校园招聘(公共基础知识)测试题带答案解析
- 企业文秘笔试题目及答案
- 校企协同策划共创现代产业学院合作框架协议
- 钢管桩基础施工措施方案
评论
0/150
提交评论