


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2.1 数怎么又不够用了(一)教学目标(一)知识目标:1.通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性.2.能判断给出的数是否为有理数;并能说出现由.(二)能力训练目标:1.让学生亲自动手做拼图活动,感受无理数存在的必要性和合理性,培养大家的动手能力和合作精神.2.通过回顾有理数的有关知识,能正确地进行推理和判断,识别某些数是否为有理数,训练他们的思维判断能力.(三)情感与价值观目标:1.激励学生积极参与教学活动,提高大家学习数学的热情.2.引导学生充分进行交流,讨论与探索等教学活动,培养他们的合作与钻研精神.3.了解有关无理数发现的知识,鼓励学生大胆质疑,培养他们为真理而奋斗的
2、精神.教学重点1.让学生经历无理数发现的过程.感知生活中确实存在着不同于有理数的数.2.会判断一个数是否为有理数.教学难点1.把两个边长为1的正方形拼成一个大正方形的动手操作过程.2.判断一个数是否为有理数.教学方法教师引导,主要由学生分组讨论得出结果.教学过程一、创设问题情境,引入新课师同学们,我们学过不计其数的数,概括起来我们都学过哪些数呢?生在小学我们学过自然数、小数、分数.生在初一我们还学过负数.师对,我们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数、零扩充到有理数范围,有理数包括整数和分数,那么有理数范围是否就能满足我们实际生活的需要呢?下面我们就来共同研
3、究这个问题.二、讲授新课1.问题的提出师请大家四个人为一组,拿出自己准备好的两个边长为1的正方形和剪刀,认真讨论之后,动手剪一剪,拼一拼,设法得到一个大的正方形,好吗?生好.(学生非常高兴地投入活动中).师经过大家的共同努力,每个小组都完成了任务,请各组把拼的图展示一下.同学们非常踊跃地呈现自己的作品给老师.师现在我们一齐把大家的做法总结一下:下面请大家思考一个问题,假设拼成大正方形的边长为a,则a应满足什么条件呢?生甲a是正方形的边长,所以a肯定是正数.生乙因为两个小正方形面积之和等于大正方形面积,所以根据正方形面积公式可知a2=2.生丙由a2=2可判断a应是1点几.师大家说得都有道理,前面
4、我们已经总结了有理数包括整数和分数,那么a是整数吗?a是分数吗?请大家分组讨论后回答.生甲我们组的结论是:因为12=1,22=4,32=9,整数的平方越来越大,所以a应在1和2之间,故a不可能是整数.生乙因为,两个相同因数的乘积都为分数,所以a不可能是分数.师经过大家的讨论可知,在等式a2=2中,a既不是整数,也不是分数,所以a不是有理数,但在现实生活中确实存在像a这样的数,由此看来,数又不够用了.2.做一做投影片2.1.1 A(1)在下图中,以直角三角形的斜边为边的正方形的面积是多少?(2)设该正方形的边长为b,则b应满足什么条件?b是有理数吗?师请大家先回忆一下勾股定理的内容.生在直角三角
5、形中,若两条直角边长为a,b,斜边为c,则有a2+b2=c2.师在这题中,两条直角边分别为1和2,斜边为b,根据勾股定理得b2=12+22,即b2=5,则b是有理数吗?请举手回答.生甲因为22=4,32=9,459,所以b不可能是整数.生乙没有两个相同的分数相乘得5,故b不可能是分数.生丙因为没有一个整数或分数的平方为5,所以5不是有理数.师大家分析得很准确,像上面讨论的数a,b都不是有理数,而是另一类数无理数.关于无理数的发现是付出了昂贵的代价的.早在公元前,古希腊数学家毕达哥拉斯认为万物皆“数”,即“宇宙间的一切现象都能归结为整数或整数之比”,也就是一切现象都可用有理数去描述.后来,这个学
6、派中的一个叫希伯索斯的成员发现边长为1的正方形的对角线的长不能用整数或整数之比来表示,这个发现动摇了毕达哥拉斯学派的信条,据说为此希伯索斯被投进了大海,他为真理而献出了宝贵的生命,但真理是不可战胜的,后来古希腊人终于正视了希伯索斯的发现.也就是我们前面谈过的a2=2中的a不是有理数.我们现在所学的知识都是前人给我们总结出来的,我们一方面应积极地学习这些经验,另一方面我们也不能死搬教条,要大胆质疑,如不这样科学就会永远停留在某处而不前进,要向古希腊的希伯索斯学习,学习他为捍卫真理而勇于献身的精神.三、课堂练习(一)课本P35随堂练习如图,正三角形ABC的边长为2,高为h,h可能是整数吗?可能是分数吗?解:由正三角形的性质可知BD=1,在RtABD中,由勾股定理得h2=3.h不可能是整数,也不可能是分数.(二)补充练习为了加固一个高2米、宽1米的大门,需要在对角线位置加固一条木板,设木板长为a米,则由勾股定理得a2=12+22,即a2=5,a的值大约是多少?
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025内蒙古巴彦淖尔市临河区第三人民医院招聘部分人员3人模拟试卷及答案详解(典优)
- 2025广东韶关市新丰县应急管理局招聘综合应急救援大队队员5人考前自测高频考点模拟试题及参考答案详解
- 2025安徽蚌埠市五河县乡村医生“乡聘村用”招聘30人模拟试卷完整答案详解
- 2025广西百色市凌云县新活力劳务有限责任公司工作人员招聘8人模拟试卷及答案详解(必刷)
- 2025年莆田市市级机关公开遴选考试真题
- 2025年长江工程职业技术学院人才引进24人模拟试卷及参考答案详解
- 2025年甘肃省武威市事业单位招聘628人【医疗岗57人】考前自测高频考点模拟试题及一套参考答案详解
- 2025年浸渗胶项目合作计划书
- 2025贵州遵义医科大学第二附属医院第十三届贵州人才博览会引才17人模拟试卷及答案详解参考
- 2025贵州贵阳市某单位派遣制员工模拟试卷附答案详解(完整版)
- 中职历史说课课件
- 遥感科学与技术课件
- 尿量的观察及护理
- 2025年4月自考00840第二外语(日语)试题
- 社交媒体焦虑成因-洞察及研究
- 2025年高速公路扩建施工合同
- 医疗设备维护的智慧运营实践
- 2025-2030中国环丁砜行业市场现状分析及竞争格局与投资发展研究报告
- 一级注册消防工程师高频真题含答案2024
- 生产运营销售管理优化项目销售预测优化设计方案
- 完整的离婚协议书打印电子版(2025年版)
评论
0/150
提交评论