26.3《二次函数》实践与探索(3)_第1页
26.3《二次函数》实践与探索(3)_第2页
26.3《二次函数》实践与探索(3)_第3页
26.3《二次函数》实践与探索(3)_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、26.3 二次函数实践与探索(3) 本课知识要点(1)会求出二次函数与坐标轴的交点坐标;(2)了解二次函数与一元二次方程、一元二次不等式之间的关系创新思维给出三个二次函数:(1);(2);(3)它们的图象分别为 观察图象与x轴的交点个数,分别是_个、_个、_个你知道图象与x轴的交点个数与什么相关吗?另外,能否利用二次函数的图象寻找方程,不等式或的解?实践与探索 例1画出函数的图象,根据图象回答下列问题(1)图象与x轴、y轴的交点坐标分别是什么?(2)当x取何值时,y=0?这里x的取值与方程有什么关系?(3)x取什么值时,函数值y大于0?x取什么值时,函数值y小于0?解 图象如图2634,(1)

2、图象与x轴的交点坐标为(-1,0)、(3,0),与y轴的交点坐标为(0,-3)(2)当x= -1或x=3时,y=0,x的取值与方程的解相同(3)当x-1或x3时,y0;当 -1x3时,y0回顾与反思 (1)二次函数图象与x轴的交点问题常通过一元二次方程的根的问题来解决;反过来,一元二次方程的根的问题,又常用二次函数的图象来解决(2)利用函数的图象能更好地求不等式的解集,先观察图象,找出抛物线与x轴的交点,再根据交点的坐标写出不等式的解集例3已知二次函数,(1)试说明:不论m取任何实数,这个二次函数的图象必与x轴有两个交点;(2)m为何值时,这两个交点都在原点的左侧?(3)m为何值时,这个二次函

3、数的图象的对称轴是y轴?分析 (1)要说明不论m取任何实数,二次函数的图象必与x轴有两个交点,只要说明方程有两个不相等的实数根,即0(2)两个交点都在原点的左侧,也就是方程有两个负实数根,因而必须符合条件0,综合以上条件,可解得所求m的值的范围(3)二次函数的图象的对称轴是y轴,说明方程有一正一负两个实数根,且两根互为相反数,因而必须符合条件0,解 (1)=,由,得,所以0,即不论m取任何实数,这个二次函数的图象必与x轴有两个交点(2)由,得;由,得;又由(1),0,所以,当时,两个交点都在原点的左侧(3)由,得m=2,所以,当m=2时,二次函数的图象的对称轴是y轴探索 第(3)题中二次函数的

4、图象的对称轴是y轴,即二次函数是由函数上下平移所得,那么,对一次项系数有何要求呢?请你根据它入手解本题当堂课内练习1已知二次函数的图象如图,则方程的解是_,不等式的解集是_,不等式的解集是_2抛物线与y轴的交点坐标为_,与x轴的交点坐标为_3已知方程的两根是,-1,则二次函数与x轴的两个交点间的距离为_4函数的图象与x轴有且只有一个交点,求a的值及交点坐标本课课外作业A组1已知二次函数,画出此抛物线的图象,根据图象回答下列问题(1)方程的解是什么?(2)x取什么值时,函数值大于0?x取什么值时,函数值小于0?2如果二次函数的顶点在x轴上,求c的值3不论自变量x取什么数,二次函数的函数值总是正值,求m的取值范围4已知二次函数,求:(1)此函数图象的开口方向、对称轴和顶点坐标,并画出草图;(2)以此函数图象与x轴、y轴的交点为顶点的三角形面积;(3)x为何值时,y05你能否画出适当的函数图象,求方程的解?B组6函数(m是常数)的图象与x轴的交点有 ( )A0个B1个C2个D1个

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论