




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、矩形的判定【教学目标】1、知识与技能理解并掌握矩形的判定方法。使学生能运用矩形的定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力。通过证明性质定理的逆命题为真命题来证明判定定理。3、情感、态度与价值观培养逆向思维的能力。重点与难点1、重点:矩形的判定。2、难点:矩形的判定及性质的综合应用。学前分析判定定理都是以“定义”为基础推导出来的。因此本节课要从复习矩形定义下手,并指出由平行四边形得到矩形只需添加一个独立条件。除了通过定义来判定一个四边形是矩形外,在探究判定定理时要让学生沿着这样的思路进行探究:先构造性质定理的逆命题,然后再去证明逆命题的真假,如能证明逆命题为真命题,那
2、么这个逆命题就成了相应的判定定理。教学过程一、复习引入我们已经知道,有一个角是直角的平行四边形是矩形,这是矩形的定义,我们可以依此判定一个四边形是矩形。除此之外,我们能否找到其他的判定矩形的方法呢?教师提问:我们先来回忆矩形的定义与性质。学生回答后教师加以总结:有一个角是直角的平行四边形是矩形。矩形是一个中心对称图形,也是一个轴对称图形。矩形除了有平行四边形的所有性质外,还具有如下的性质:两条对角线相等且互相平分;四个内角都是直角。教师讲解:我们借鉴上一节的探究方法。要判定一个四边形是矩形,可以从定义入手,一方面证明它是一个平行四边形;另一方面证明这个四边形有一个角是直角。我们还可以像上节那样
3、,将矩形性质定理的条件与结论相交换,形成一个逆命题,然后证明这个逆命题是真命题,从而得到一个判定定理。二、探究新知(一)判定定理1的探究与证明教师提问:矩形的第1条性质:“矩形的两条对角线相等且互相平分”的逆命题是什么?学生回答后教师加以总结:上述性质定理的逆命题是:两条对角线相等且互相平分的四边形是矩形。学生动手测量:数学书的对角线是否相等通过实践,我们由此可以得到判定矩形的一种方法:对角线相等的平行四边形是矩形,或对角线互相平分且相等的四边形是矩形。结论的证明很简单。在平行四边形ABCD中,对角线AC与对角线BD相等,我们可以证明四边形ABCD是矩形。教师讲解该题的证明过程并板书。教师讲解
4、:这一判定方法在生活中有许多用处,木工师傅在制作门框或其他矩形的物体时,常用测量对角线的方法来检验产品是否符合要求。(二)例题讲解教师提出问题:O是矩形ABCD的对角线AC与BD的交点,E、F、G、H分别是AO、BO、CO、DO上的一点,且AEBFCGDH。求证:四边形EFGH是矩形。教师分析解题思路:O是矩形ABCD的对角线AC与BD的交点,AOBOCODO。有了这个结论,要证四边形EFGH是矩形,很自然会想到利用刚讲过的矩形判定定理,即想办法去证明HOGOFOEO。再结合条件AEBFCGDH,问题即可得证。教师要求学生叙述证明过程,并同步纠正学生叙述的错误,同时板书(三)判定定理2的探究与
5、证明教师通过提醒拓展学生的思路:由矩形的另一条性质:“矩形的四个内角都是直角”,它的逆命题是什么?如果我们能证明这个命题是真命题,我们也就得到了矩形的另一个判定定理。实际上,由于四边形的内角和是360,所以只要有3个角都是直角,则第四个角也一定是直角。这样我们只要去证“三个内角都是直角的四边形是矩形”这个命题是真命题就可以了。由此得到了判定矩形的又一种方法:有三个内角是直角的四边形是矩形。教师要求学生自己证明,并向学生提示,可以通过同旁内角互补两直线平行这个定理来证明满足条件的四边形是平行四边形,然后再证矩形。学生证明后教师板书证明过程。已知:四边形ABCD中,ABC90。求证:四边形ABCD
6、是矩形。证明:AB90,A与B互补。ADBC。BC90,C与B互补。ABDC四边形ABCD是平行四边形。又B90,四边形ABCD是矩形。(四)例题讲解(补充)已知:的四个内角的平分线分别相交于点E、F、G、H。求证:四边形EFGH是矩形。分析:要证四边形EFGH是矩形,由于此题目可分解出基本图形,如图20.26,因此,可选用“三个角是直角的四边形是矩形”来证明。证明:四边形ABCD是平行四边形,ADBD。DABABC180。又AE平分DAB,BG平分ABC,EABABG 18090。AFB90。同理可证AEDBGCCHD90。四边形EFGH是矩形(三个角是直角的四边形是矩形)三、随堂练习1、甲
7、、乙、丙、丁四位同学到木工厂参观时,一木工师傅拿尺子要他们帮助检测一个窗框是否是矩形,他们各自做了如下检测,检测后,他们都说窗框是矩形,你认为最有说服力的是()A、甲量得窗框两组对边分别相等;B、乙量得窗框对角线相等;C、丙量得窗框的一组邻边相等;D、丁量得窗框的两组对边分别相等且两条对角线也相等。2、已知:四边形ABCD中,ABCD,AD180,AC、BD相交于点O,AOB是等边三角形。求证:四边形ABCD是矩形。参考答案:1.D2.提示:因为AD180,所以ABCD,又ABCD,所以四边形ABCD是平行四边形,所以OA=OC= AC,OB=OD= BD,又因为AOB是等边三角形,所以OA=
8、OB,所以AC=BD,所以四边形ABCD是矩形。四、课时总结对角线相等的平行四边形是矩形,或对角线互相平分且相等的四边形是矩形。有三个角是直角的四边形是矩形。五、布置作业1.BD、BE分别是ABC与它的邻补角ABP的平分线,AEBE,ADBD,E、D为垂足。(1)求证:四边形AEBD是矩形;(2)连结ED,若F、G分别为AE、AD上的点,FG交AB于点H,且FGED。求证:AHG为等腰三角形。2.在四边形ABCD中,ADBC,B90,AD18cm,BC21cm,动点P从A开始沿AD边向D以1cm秒的速度运动,动点Q从C点开始沿CB边以2cm秒的速度运动,P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动的时间为t秒,t为何值时四边形ABQP为矩形?六、板书设计黑板分为左、中、右三部分,中间与右边用于教师板书课本例题等,写满后擦去更新,左边用于板书以下内容:对角线相等的平行四边
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- T/CBMCA 058-2024道路用钢渣砖
- T/CECS 10396-2024铝模混凝土用界面处理剂
- 盘扣架租赁合同4篇
- 专业标准化题库及答案
- 上海市考编小学数学试题
- 上海安全b证考试题库及答案
- 版权登记合同转让协议5篇
- 解除三方协议范文5篇
- 理论联系实际谈一谈如何维护政治安全?参考答案1
- 民间借贷合同范本(借款人为个人)4篇
- 数字图像处理-第12章 图像编码
- JGJ100-2015 车库建筑设计规范
- 娱乐场所安全管理条例
- CJJ181-2012 城镇排水管道检测与评估技术规程
- 部编版八年级上册语文第一单元整体教学设计
- 2024年版婴幼儿功能性消化不良综合征非药物干预专家共识(完整版)
- 苏教版小学1-6年级英语单词
- 托育服务项目运营管理方案
- 江苏省盐城市、南京市2024年数学高一下期末统考模拟试题含解析
- 生物医学电子学智慧树知到期末考试答案章节答案2024年天津大学
- 土方及场地平整技术交底
评论
0/150
提交评论