版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 本科实验报告 实验名称: 随机信号分析实验 课程名称:-1随机信号分析 实验时间: 任课教师: 1.5 实验地点: 实验教师: 实验类型: 原理验证 综合设计 自主创新 学生姓名:1.51 :级 班号学/0.5 1 号: 组 院: 学 0.50 同组搭档: 业: 专 -0.5 0 绩: 成 实验一 随机序列的产生及数字特征估计 一、实验目的 1、学习和掌握随机数的产生方法。 2、实现随机序列的数字特征估计。 二、实验原理 1、随机数的产生 随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。进行随机信号仿真分析时,需要模拟产生各种分布的随机数。 在计算机仿真时,通常利用数学方法产生随机
2、数,这种随机数称为伪随机数。伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。 (0,1)均匀分布随机数是最最基本、最简单的随机数。(0,1)均匀分布指的是在0,1区间上的均匀分布,即 U(0,1)。实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下: y?1,yky(modN) 1nn?0x?y/N nn?x为产生的(0,1)均匀分布随机数。序列 n下面给出了上式的3组常用参数:
3、 71010?5?7N?10?,k ;1、,周期81631105?3,?2N?2?,k 、(周期;IBM 随机数发生器)2953110?2?,?72?1,kN? 周期;、3(ran0) 由均匀分布随机数,可以利用反函数构造出任意分布的随机数。均匀分布随机变量,为F (x),而R (0,1) 定理 1.1 若随机变量X 具有连续分布函数X 则有?1(FR)X? x由这一定理可知,分布函数为F (x)的随机数可以由(0,1)均匀分布随机数按上式进行变X换得到。 中产生随机序列的函数MATLAB 、2(1)(0,1)均匀分布的随机序列 函数:rand 用法:x = rand(m,n) 功能:产生mn
4、 的均匀分布随机数矩阵。 (2)正态分布的随机序列 函数:randn 用法:x = randn(m,n) 功能:产生mn 的标准正态分布随机数矩阵。 2),?N(?分布的随机序列,则可以由标准正态随机序列产生。 如果要产生服从(3)其他分布的随机序列 MATLAB 上还提供了其他多种分布的随机数的产生函数,下表列出了部分函数。 MATLAB 中产生随机数的一些函数 3、随机序列的数字特征估计 对于遍历过程,可以通过随机序列的一条样本函数来获得该过程的统计特性。这里我们假定随机序列 X (n)为遍历过程,样本函数为x(n),其中n=0,1,2,N-1。那么,X (n)的均值、方差和自相关函数的估
5、计为 利用MATLAB 的统计分析函数可以分析随机序列的数字特征。 (1)均值函数 函数:mean 用法:m = mean(x) 。x(n)为样本序列x 的均值,其中X (n)功能:返回按上面第一式估计(2)方差函数 函数:var 用法:sigma2 = var(x) 功能:返回按上面第二式估计X (n)的方差,其中x 为样本序列x(n),这一估计为无偏估计。 (3)互相关函数 函数:xcorr 用法:c = xcorr(x,y) c = xcorr(x) c = xcorr(x,y,opition) c = xcorr(x,opition) 功能:xcorr(x,y)计算 X (n)与Y(n
6、)的互相关,xcorr(x)计算 X (n)的自相关。 option 选项可以设定为: biased 有偏估计,即 unbiased 无偏估计,即按上面第三式估计。 coeff m = 0 时的相关函数值归一化为1。 none 不做归一化处理。 三、实验内容 1、采用线性同余法产生均匀分布随机数1000 个,计算该序列均值和方差与理论值之间的误差大小。改变样本个数重新计算。 线性同余法的公式如下: y?1,yky(modN) 10nn?x?y/N nn实验代码: Num=input(Num=); N=231; k=216+3; Y=zeros(1,num); X=zeros(1,num); Y
7、(1)=1; i=2:numforY(i)=mod(k*Y(i-1),N); end X=Y/N; a=0; b=1; m0=(a+b)/2; sigma0=(b-a)2/12; m=mean(X); sigma=var(X); delta_m=abs(m-m0); delta_sigma=abs(sigma-sigma0); plot(X,k); xlabel(n); ylabel(X(n); delta_m delta_sigma axis tight 实验结果: delta_sigma=0.0011 delta_=0.0110 Num=1000 、A 0.90.80.70.6)n0.5(
8、X0.40.30.20.11000800900400500600700100200300n B、Num=5000 delta_m =2.6620e-04 delta_sigma =0.0020 0.90.80.70.6)n0.5(X0.40.30.20.1500100015002000250030003500400045005000n 实验结果分析:样本值越大,实际值越接近理论值,误差越小。 ? 的指数分布的分布函数为、参数为2?x? e1?Fx利用反函数法产生参数为0.5 的指数分布随机数1000 个,测试其方差和相关函数。 实验代码: R=rand(1,1000); lambda=0.5;
9、 X=-log(1-R)/lambda; DX=var(X); Rm,m=xcorr(X); subplot(211); plot(X,k);xlabel(n);ylabel(X(n);axis tight; subplot(212); plot(m,Rm,k);xlabel(m);ylabel(R(m);axis tight; 实验结果: 15 10)n(X51002003004005006007008009001000n 60004000)m(R2000-800-600-400-2000200400600800m DX =4.1201 实验结果分析: 方差的理论值应为1/(0.52)=4,
10、实际值为4.1201,与其基本一致,有一定偏差。 估计该序列的均值、,个样本)1000(分布的高斯随机数N(1,4)产生一组、3方差和相关函数。 产生高斯分布的随机数可使用函数normrnd, 实验代码: X=normrnd(1,2,1,1000); Mx=mean(X);Dx=var(X); Rm,m=xcorr(X); subplot(211); plot(X,k);xlabel(n);ylabel(X(n);axis tight; subplot(212); plot(m,Rm,k);xlabel(m);ylabel(R(m);axis tight; Mx Dx 实验结果: 5)n(X0
11、-51002003004005006007008009001000n 40003000)m(2000R10000-800-600-400-2000200400600800m Mx =0.9937 Dx = 3.8938 实验结果分析: 理论上,均值为1,方差为4。实验中的均值为0.9937,方差为3.8938。在误差允许范围内,理论值和实验值基本相同。 四、实验心得体会 的matlab用于随机序列的产生和数字特征的估计,同样是用本次随机信号分析实验,平台实现。通过这次实验,学习和掌握随机数的产生方法、实现随机序列的数字特征估计,并用matlab产生相应的图形,更直观的了解了相关的知识。本次实验
12、的难点在于用线性同余法产生随机序列,在实际编程中需要用到一个FOR循环,起初并不熟悉其语法特征,经过反复的修改,运行成功。 实验二 随机过程的模拟与数字特征 一、实验目的 1、学习利用MATLAB 模拟产生随机过程的方法。 2、熟悉和掌握特征估计的基本方法及其MATLAB 实现。 二、实验原理 1、正态分布白噪声序列的产生 MATLAB 提供了许多产生各种分布白噪声序列的函数,其中产生正态分布白噪声序列的函数为randn。 函数:randn 用法:x = randn(m,n) 功能:产生mn 的标准正态分布随机数矩阵。 2?),N(分布的随机序列,则可以由标准正态随机序列产生。如果如果要产生服
13、从2),?XN(?。 N(0,1),则2、相关函数估计 MATLAB 提供了函数xcorr 用于自相关函数的估计。 函数:xcorr 用法:c = xcorr(x,y) c = xcorr(x) c = xcorr(x,y,opition) c = xcorr(x,opition) 功能:xcorr(x,y)计算X (n)与Y(n)的互相关,xcorr(x)计算X (n)的自相关。 option 选项可以设定为: biased 有偏估计。 unbiased 无偏估计。 coeff m=0 时的相关函数值归一化为1。 不做归一化处理。none 3、功率谱估计 MATLAB 函数periodogr
14、am 实现了周期图法的功率谱估计。 函数:periodogram 用法:Pxx,w = periodogram(x) Pxx,w = periodogram(x,window) Pxx,w = periodogram(x,window,nfft) Pxx,f = periodogram(x,window,nfft,fs) periodogram(.) 功能:实现周期图法的功率谱估计。其中: Pxx 为输出的功率谱估计值; f 为频率向量; w 为归一化的频率向量; window 代表窗函数,这种用法对数据进行了加窗,对数据加窗是为了减少功率谱估计中因为数据截断产生的截断误差,下图列出了产生常用
15、窗函数的MATLAB函数。 nfft设定FFT算法的长度; fs表示采样频率; 三、实验内容 1、按如下模型产生一组随机序列 (n)?1)?0.8x(nx(n)?其中是均值为1,方差为 4的正态分布白噪声序列。估计过程的自相(n)?关函数和功率谱。 实验代码: y0=randn(1,500); %产生一长度为500的随机序列 y=1+2*y0; x(1)=y(1); n=500; for i=2:1:n x(i)=0.8*x(i-1)+y(i); %按题目要求产生随机序列x(n)=0.8x(n-1)+w(n) end subplot(311); plot(x); );x(n)title(sub
16、plot(312); c=xcorr(x); %用xcorr函数求x(n)的自相关函数 plot(c); title(R(n); p=periodogram(x); %用periodogram函数求功率谱密度 subplot(313); plot(p); title(S(w); 实验结果: x(n)20 0-200501001502002503003504004505004R(n)x 102 1001002003004005006007008009001000S(w)2000 10000050100150200250300 上图中分别为长度为500的样本序列、序列的自相关函数、序列的功率谱。
17、2、设信号为 f?0.05,f?0.12,其中为正态分布白噪声序列,试在 N =256和)w(n21N=1024点时,分别产生随机序列x(n),画出x(n)的波形并估计x(n)的相关函数和功率谱。 实验代码: (1)、N=256时 N=256;w=randn(1,N); %用randn函数产生一个长度为256的正态分布白噪声序列 n=1:1:N; f1=0.05; f2=0.12; x=sin(2*pi*f1*n)+2*cos(2*pi*f2*n)+w(n); %产生题目所给信号 R=xcorr(x); %求x(n)的自相关函数 p=periodogram(x); %求x的功率谱 subplo
18、t(311); plot(x);title(x(n); subplot(312); plot(R);title(R(n); subplot(313); plot(p);title(S(w); 实验结果: x(n)5 0-5050100150200250300R(n)1000 0-10000100200300400500600S(w)100 500020406080100120140 上图中分别为长度为256的样本序列、序列的自相关函数、序列的功率谱。 (2)、N=1024时 将上述第一行代码改为N=1024;即可。 实验结果:x(n)10 0-10020040060080010001200R(
19、n)5000 0-500005001000150020002500S(w)400 20000100200300400500600 上图中分别为长度为1024的样本序列、序列的自相关函数、序列的功率谱。可明显看出,功率谱集中在两个频率分量处。 四、实验心得体会 这次实验学会了在MATLAB中求解并绘制随机序列的自相关函数和功率谱密度。用MATLAB可以用具体的函数来求自相关函数和功率谱,极大的方便了学习过程。通过本次实验,学习了利用MATLAB 模拟产生随机过程的方法并且熟悉和掌握特征估计的基本方法及其MATLAB 实现。 实验三 随机过程通过线性系统的分析 一、实验目的 1、理解和分析白噪声通
20、过线性系统后输出的特性。 2、学习和掌握随机过程通过线性系统后的特性,验证随机过程的正态化问题。 二、实验原理 1、白噪声通过线性系统 设连续线性系统的传递函数为H( )或H(s),输入白噪声的功率谱密度为SX( )=N0/2,那么系统输出的功率谱密度为 2 (S)=|H()| (3.1) Y 输出自相关函数为 2 H()| R ()= (3.2) Y 输出相关系数为 )3.3 ( 输出相关时间为 = (3.4) 0输出平均功率为 2 EH(=)| (3.5) 上述式子表明,若输入端是具有均匀谱的白噪声,则输出端随机信号的功率谱主要由系统的幅频特性|H()|决定,不再是常数。 2、等效噪声带宽
21、 在实际中, 常常用一个理想系统等效代替实际系统的H(),因此引入了等效噪声带宽 的概念,他被定义为理想系统的带宽。等效的原则是,理想系统与实际系统在同一白噪声的激励下,两个系统的输出平均功率相等,理想系统的增益等于实际系统的最大增益。 实际系统的等效噪声带宽为 2 H(=)| (3.6) 或 = (3.7) 3、线性系统输出端随机过程的概率分布 (1)正态随机过程通过线性系统 若线性系统输入为正态过程,则该系统输出仍为正态过程。 (2)随机过程的正态化 随机过程的正态化指的是,非正态随机过程通过线性系统后变换为正态过程。任意分布的白噪声通过线性系统后输出是服从正态分布的;宽带噪声通过窄带系统
22、,输出近似服从正态分布。 三、实验内容 1、仿真一个平均功率为1的白噪声带通系统,白噪声为高斯分布,带通系统的两个截止频率分别为3kHz和4kHz,估计输出的自相关函数和功率谱密度函数。(假设采样频率为10kHz) 实验代码: Fs=10000; %抽样频率为10kHz x=randn(1000,1); %产生随机序列,模拟高斯白噪声 figure(1); subplot(3,1,1); plot(x);grid on; xlabel(t); subplot(3,1,2); x_corr=xcorr(x,unbiased); %计算高斯白噪声的自相关函数 plot(x_corr);grid o
23、n; subplot(3,1,3); Pxx,w=periodogram(x); %计算功率谱密度 x_Px=Pxx;plot(x_Px);grid on; figure(2); subplot(2,1,1); 高斯白噪声一维概率密度函数%x_pdf,x1=ksdensity(x); plot(x1,x_pdf);grid on; subplot(2,1,2); f=(0:999)/1000*Fs; X=fft(x); mag=abs(X); %随机序列的频谱 plot(f(1:1000/2),mag(1:1000/2); grid on; xlabel(f / Hz); figure(3);
24、 subplot(3,1,1); b,a=ellip(10,0.5,50,3000,4000*2/Fs); H,w=freqz(b,a); %带通滤波器 plot(w*Fs/(2*pi),abs(H);grid on; xlabel(f / Hz); ylabel( H(w); subplot(3,1,2); y=filter(b,a,x); y_pdf,y1=ksdensity(y); %滤波后的概率密度函数 plot(y1,y_pdf);grid on; y_corr=xcorr(y,unbiased); %滤波后自相关函数 subplot(3,1,3); plot(y_corr);gri
25、d on; figure(4); Y=fft(y); magY=abs(Y); %随机序列滤波后频谱 subplot(2,1,1); plot(f(1:1000/2),magY(1:1000/2);grid on; xlabel(f / Hz); subplot(2,1,2); nfft=1024; index=0:round(nfft/2-1); ky=index.*Fs./nfft; window=boxcar(length(y_corr);Pyy,fy=periodogram(y_corr,window,nfft,Fs); %滤波后高斯白噪声功率谱 y_Py=Pyy(index+1);
26、plot(ky,y_Py);grid on; 实验结果: 高斯白噪声序列5 0-501002003005006007004008009001000t数函白噪声自相关斯高2 0-20200400600800100012001400160018002000高斯白噪声功率谱密度2 106005004003002001000高斯白噪声一维概率密度函数0.4 0.30.20.10-5-4-3-2-1012345模拟高斯白噪声序列频谱80 60402000500100015002000250030003500400045005000f / Hz带通滤波器1 )w0.5(H00500100025003000
27、350015002000400045005000f / Hz数函维波后一概率密度滤带通1 0.50-1.5-1-0.500.511.52限带高斯白噪声自相关函数0.2 0-0.20200400600800100012001400160018002000 电路,分析输出的统计特性。RC 、设白噪声通过下图所示的2 (1)试推导系统输出的功率谱密度、相关函数、相关时间和系统的等效噪声带宽。 (2)采用MATLAB 模拟正态分布白噪声通过上述RC 电路,观察输入和输出的噪声波形以及输 出噪声的概率密度。 (3)模拟产生均匀分布的白噪声通过上述RC 电路,观察输入和输出的噪声波形以及输出噪声 的概率密
28、度。 (4)改变RC 电路的参数(电路的RC 值),重做(2)和(3),与之前的结果进行比较。 (1)、由图中所示电路,根据电路分析的相关知识,可推导出 NS(w)? 输出功率谱密度为: 222R?22wC?N? Re?RC 相关函数为: 4RC?RC 相关时间为: ?B 等效噪声带宽为: 2RC(2)、实验代码: R=100; C=0.01; b=1/(R*C); n=1:1:500; h=b*exp(-n*b); %RC电路的冲击响应 x=randn(1,1000); %产生正态分布的白噪声 y=conv(x,h); fy y1=ksdensity(y) %求输出噪声的概率密度 subpl
29、ot(3,1,1); plot(x);title(x(n); subplot(3,1,2); plot(y); title(y(n); subplot(3,1,3); plot(fy); title(fy); 实验结果: x(n)5 0-501002003004005006007008009001000y(n)2 0-2050010001500fy4 200102030405060708090100 (3)、实验代码: R=100; C=0.01; b=1/(R*C); n=1:1:500; h=b*exp(-n*b); x=rand(1,1000); %均匀分布的白噪声 y=conv(x,h
30、); fy y1=ksdensity(y); subplot(3,1,1); plot(x);title(x(n); subplot(3,1,2); plot(y); title(y(n); subplot(3,1,3); plot(fy); title(fy); 实验结果: x(n)1 0.5001002003004005006007008009001000y(n)1 0.50050010001500fy4 200102030405060708090100 (4)、a、改变R、C值为:R=200,C=0.01; 实验结果: 正态分布x(n)5 0-5010020030040050060070
31、08009001000y(n)2 0-2050010001500fy4 200102030405060708090100 均匀分布x(n)1 0.5001002003004005006007008009001000y(n)1 0.50050010001500fy4 201009080706050403020100b、改变R、C的值为:R=10,C=0.01; 实验结果: 正态分布 x(n)5 0-501002003004005006007008009001000y(n)1 0-1050010001500fy10 500102030405060708090100 均匀分布x(n)1 0.5001
32、002003004005006007008009001000y(n)1 0.50050010001500fy5 00102030405060708090100 实验结果分析: 显然,系统相关时间与系统带宽成反比。 从输入及输出波形可以看出,正态随机过程通过一个线性系统后,输出仍为正态分布。而对于任意分布的白噪声,通过一个线性系统后,输出也服从正态分布。 四、实验心得体会 本次实验是关于随机信号通过线性系统的,可以看出,白噪声通过线性系统后,输出服从正态分布,从实践上验证了课本的理论,通过本次实验,理解和分析白噪声通过线性系统后输出的特性,并且学习和掌握随机过程通过线性系统后的特性,验证随机过程
33、的正态化问题。 实验四 窄带随机过程的产生及其性能测试 一、实验目的 1、基于随机过程的莱斯表达式产生窄带随机过程。 2、掌握窄带随机过程的特性,包括均值(数学期望)、方差、相关函数及功率谱密度等。 二、实验原理 1.窄带随机过程的莱斯表达式 任何一个实平稳窄带随机过程X (t)都可以表示为 上式称为莱斯表达式,根据上式可以模拟产生窄带随机过程,具体过程下图所示。 2.窄带随机过程包络与相位的概率密度 包络的概率密度为,服从瑞利分布。 相位的概率密度为,呈均匀分布。 3.窄带随机过程包络平方的概率密度 包络平方的概率密度为0,为指数概率密度函数。 三、实验内容 产生一满MATLAB用基于随机过
34、程的莱斯表达式,按上图所示结构框图,、1足条件的窄带随机过程。 实验代码: n=1:1:1000; h=exp(-n); c1=randn(1,1000); a=conv(c1,h); c2=randn(1,1000); %产生两个正态分布的高斯白噪声 b=conv(c2,h); %通过低通滤波器 fc=10000; x=zeros(1,1000); for i=1:1000 %卷积结果相加,得到窄带随机过程 x(i)=a(i)*cos(2*pi*fc*i)-b(i)*sin(2*pi*fc*i); end plot(x); title(窄带随机过程); 实验结果: 窄带随机过程2 -0.5-
35、1-1.510009006007008005003001000200400 2、画出该随机过程的若干次实现,观察其形状。 实验结果:窄带随机过程1.5 10.50-0.5-1-1.501002003004005006007008009001000窄带随机过程 -1.5-210009008007006005004003002001000窄带随机过程1.5 10.50-0.5-1-1.501002003004005006007008009001000 3、编写MATLAB程序计算该随机过程的均值函数、自相关函数、功率谱、包络、包络平方及相位的一维概率密度,画出相应的图形并给出解释。 实验代码: n=1:1:1000; h=exp(-n); c1=randn(1,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年河南工业和信息化职业学院高职单招职业适应性测试参考题库有答案解析
- 2026年广州铁路职业技术学院单招职业技能笔试备考题库带答案解析
- 2026年贵阳幼儿师范高等专科学校单招综合素质考试模拟试题带答案解析
- 财经应用文规章制度课件
- 财税顾问课件模板
- 2026年河南女子职业学院单招综合素质考试参考题库带答案解析
- 2026年常德职业技术学院单招综合素质笔试参考题库带答案解析
- 财政预算执行审计课件
- 财政的职能教学课件
- 2026年湖南艺术职业学院高职单招职业适应性测试备考试题有答案解析
- 2025年互联网营销游戏化营销案例解析可行性研究报告
- DB31∕T 1048-2020“上海品牌”认证通 用要求
- 病理性赌博的识别和干预
- 校园文化建设协议合同
- 2026届高三语文联考作文题目导写分析及范文:当语言与真实经验脱钩
- 《听力考试室技术规范》
- 2024年广东省高职高考语文试卷及答案
- 人工智能在职业院校人才培养中的应用研究报告
- 土方开挖回填施工应急预案方案
- 2025年普通高中学业水平选择性考试(福建卷)历史试题(含答案)
- 街道人民调解工作课件
评论
0/150
提交评论