




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、知 识 要 点函数y f(x)在点xo处连续是y f(x)在点xo处可导的必要不充分条件可以证明,如果y f (x)在点xo处可导,那么y f(x)点xo处连续.事实上,令x X。 x,则xXo相当于x 0 .于是 lim f (x) lim f (xox) lim f (x xo) f (xo) f (xo)x Xox ox of (xo x) f (xo)f(xox) f(xo)lim - x f (xo) lim - lim lim f (xo)f (xo) o f (xo)f (xo).x oxx oxx o x o如果y f (x)点xo处连续,那么y f(x)在点xo处可导,是不成
2、立的.例:f(x) |x|在点xo o处连续,但在点xo o处不可导,因为一y U,当x o时,一y 1 ;x xx当x V o时,-y1,故lim y不存在.xx o x注:可导的奇函数函数其导函数为偶函数.可导的偶函数函数其导函数为奇函数.3. 导数的几何意义:函数y f (x)在点xo处的导数的几何意义就是曲线y f (x)在点(xo,f(x)处的切线的斜率,也就是说,曲线y f(x)在点P(xo,f(x)处的切线的斜率是fix。),切线方程为y yo f (x)(x xo).4、几种常见的函数导数:n n 1(x ) nx (n R)c 0 ( C为常数)5. 求导数的四则运算法则:I
3、IIII.(uv) vu vu (cv) CV CV CV ( c为常数)注:u,v必须是可导函数.若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、 差、积、商不一疋不可导 .22例如:设f (x) 2 si nx , g(x) cosx ,贝U f(x),g(x)在x 0处均不可导,但它们和xxf(x) g(x) sinx cosx在 x 0处均可导.6. 复合函数的求导法则:fx( (x) f(u) (x)或yx yu ux复合函数的求导法则可推广到多个中间变量的情形.7. 函数单调性:函数单调性的判定方法:设函数 y f(x)在某个区间内可导,如果f(x) 0
4、,则y f(x)为增函数;如果f(x) V0,则y f(x)为减函数.常数的判定方法;如果函数y f(x)在区间I内恒有f(x)=O,则y f(x)为常数.注:f(x) 0是f (x)递增的充分条件,但不是必要条件,如y 2x3在(,)上并不是都有f(x) 0 ,有一个点例外即x=0时f (x) = 0 ,同样f (x) 0是f (x)递减的充分非必 要条件一般地,如果f (x)在某区间内有限个点处为零,在其余各点均为正(或负),那么 f(x)在该区间上仍旧是单调增加(或单调减少)的8. 极值的判别方法:(极值是在X0附近所有的点,都有f(x) V f(X0),则f(X0)是函数f(x) 的极
5、大值,极小值同理)当函数f(x)在点X0处连续时, 如果在X0附近的左侧f(x) 0,右侧f(x) V 0,那么f(X0)是极大值; 如果在X0附近的左侧f (X) V 0,右侧f(x) 0,那么f(X。)是极小值也就是说X0是极值点的充分条件是X0点两侧导数异号,而不是f(x)=0.此外,函数不 可导的点也可能是函数的极值点 .当然,极值是一个局部概念,极值点的大小关系是不确 定的,即有可能极大值比极小值小(函数在某一点附近的点不同)注:若点X0是可导函数f(x)的极值点,则f(x)=o.但反过来不一定成立.对于可导函 数,其一点xo是极值点的必要条件是若函数在该点可导,则导数值为零 例如:
6、函数y f (x) x3,x 0使f (x) =0,但x 0不是极值点.例如:函数y f(x) |x|,在点x 0处不可导,但点x 0是函数的极小值点.9.极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值 进行比较.注:函数的极值点一定有意义.导数练习一、选择题1 设函数f(x)在R上可导,其导函数f (x),且函数f(x)在x 2处取得极小值,则函数y xf (x)的图象可能是2设aO,bO,e是自然对数的底数A. 若 ea+2a=eb+3b,则 abB. 若 ea+2a=eb+3b,则 abD. 若 ea-2a=eb-3b,则 a0, b0.A.若 2a 2a 2
7、b 3b ,则 abB.若 2a 2a2bC.若 2a 2a 2b 3b ,则 abD.若 2a 2a9.设函数f(x)在R上可导,其导函数为f (x),且函数的图像如题(8)图所示,则下列结论中一定成立的是A.函数f (x)有极大值f(2)和极小值f (1)B.函数f (x)有极大值f( 2)和极小值f(1)C函数f (x)有极大值f(2)和极小值f( 2)3b,则 aby2bD.函数f (x)有极大值f( 2)和极小值f (2)10.设函数f (x) xex,则A. x 1为f (x)的极大值点B. x 1为f (x)的极小值点C. x 1为f (x)的极大值点D. x 1为f (x)的极
8、小值点11.设a 0且a 1,则“函数f(x)ax在R上是减函数”,是“函数g(x)(2a)x3在R上是增函数”的A.充分不必要条件C. 充分必要条件B必要不充分条件D.既不充分也不必要条件12.已知函数y x33x c的图像与x轴恰有两个公共点,则cA.2 或 2、填空题B.9 或 3C.1 或 1D.3或13.曲线yx(3ln x1)在点(1,1)处的切线方程为14.曲线yx3x 3在点1,3处的切线方程为三、解答题 15 .已知函数f (x) ax3 bx c在x 2处取得极值为c 16(1) 求a、b的值;(2)若f(x)有极大值28,求f(x)在3,3上的最大值.16 .已知 a R,函数 f (x) 4x3 2ax a(1)求f(x)的单调区间证明:当 0W x0.11a17. 已知函数 f(x) x3- - x2 ax a(a 0)32(I) 求函数f (x)的单调区间;(II) 若函数f(x)在区间(2,0)内恰有两个零点,求a的取值范围;(III) 当a 1时,设函数f (x)在区间t,t3上的最大值为M (t),最小值为m(t),记g(t) M (t) m(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 深度解析现代康复的课件
- 2024年美术设计师色彩理论与运用试题及答案
- 工学矛盾面试题及答案
- 纺织品行业基础知识的重要性试题及答案
- 破产法试题及答案
- 广告设计师考试中的必知试题与答案
- 税收基础历年试题及答案
- 提升消费力激发内需增长的有效路径与策略
- 《骨关节炎与钙质流失》课件
- 农业机器人发展趋势与市场前景洞察
- 利昕报废汽车回收拆解有限公司报废汽车回收拆解建设项目环评可研资料环境影响
- 我国军事科技发展
- 飞机维修员入门教程
- 超声引导下神经阻滞下肢篇
- 中国居民营养与慢性病状况报告
- 《如何处理人际关系》课件
- 小学教师汉字听写题库
- 手机无线充电技术方案
- 中国带状疱疹诊疗专家共识2023版
- 《旋转变压器 》课件
- 通信线路工程维护
评论
0/150
提交评论