




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2.2 平方根教学目标:( 一 ) 教学知识点1. 了解数的算术平方根的概念,会用根号表示一个数的算术平方根.2. 了解求一个正数的算术平方根与平方是互逆的运算,会利用这个互逆运算关系求某些非负数的算术平方根 .3. 了解算术平方根的性质 .( 二 ) 能力训练要求1. 加强概念形成过程的教学,提高学生的思维水平.2. 鼓励学生进行探索和交流,培养他们的创新意识和合作精神.( 三 ) 情感与价值观要求1. 让学生积极参与教学活动,培养他们对数学的好奇心和求知欲.2. 训练学生动脑、动口、动手能力.教学重点:了解算术平方根的概念、性质,会用根号表示一个正数的算术平方根.教学难点:了解算术平方根的
2、概念、性质.教学过程: . 新课导入上节课我们学习了无理数、了解到无理数产生的实际背景和引入的必要性,掌握了无理数的概念,知道有理数和无理数的区别是:有理数是有限小数或无限循环小数,无理数是无限不循环小数 . 比如在a2=2 中, 2 是有理数,而a是无理数 . 在前面我们学过若x2= ,则a叫x的平方,反a过来 x 叫 a 的什么呢?本节课我们就来一起研究这个问题. 讲授新课师在讲新课之前,我们先回忆一下勾股定理,请同学们回答.生勾股定理就是在直角三角形中两条直角边的平方和等于斜边的平方.师下面请大家根据勾股定量,结合图形完成填空.根据下图填空x2=_y 2=_z2=_w2=_师请大家思考后
3、回答.生 x2=2, y2=3, z2=4, w2=5.师请大家再分析一下,x, y, z, w中哪些是有理数?哪些是无理数?生 x, y, w是无理数, z 是有理数 .师为什么呢?生因为没有任何整数或分数的平方等于2,3,5,所以 x,y,z 不是有理数,而22=4,所以 z=2.师这位同学分析得非常正确,那么大家能不能把上图中的x, y, z, w表示出来呢?请大家仔细看书后回答.生 x=, y=, z=, w=.师若一个正数x 的平方等于a,即x2=a,则这个正数x 就叫做a 的算术平方根. 记为“”读作“根号a” . 这就是算术平方根的定义. 特别地规定0 的算术平方根是0,即=0.
4、师下面我们根据算术平方根的定义求一些数的算术平方根.例 1求下列各数的算术平方根:(1)900 ; (2)1 ; (3); (4)14.解: (1) 因为 302=900,所以 900 的算术平方根是30,即=30;(2)因为 12=1,所以 1 的算术平方根是 1,即=1;(3)因为所以的算术平方根是,即;(4)14 的算术平方根是.通过上面的例题,大家思考一下,我们在求算术平方根时是借助于哪一种运算来求的?生是通过平方来求的.师对 . 由此我们可以看出一个正数的平方和求算术平方根是互为逆运算. 而且我们在例题中的步骤采取语言叙述和符号表示互相补充的做法,目的是让大家明白算术平方根的概念,以
5、及从计算中进一步体会一个正数的平方和求算术平方根是互为逆运算. 在以后的步骤中可以简化.例 2自由下落的物体的高度h( 米 ) 与下落时间t ( 秒 ) 的关系为 h=4.9 t 2. 有一铁球从19.6 米高的建筑物上自由下落,到达地面需要多长时间?解:将h=19.6代入公式h=4.9 t 2 得t 2 =4, 所以t =2( 秒 )即铁球到达地面需要2 秒 .师下面大家再观察一下刚才咱们求出的算术平方根有什么特点.生甲算术平方根是整数或分数,即为有理数.生乙不对,那是不是有理数?若是则是,分数还是整数?生丙因为没有任何一个整数或分数的平方等于14,所以不是有理数,而是无理数.师大家的分析都
6、有道理,我提示一下从符号方面考虑.生甲噢,算术平方根是正数,如, 2.生乙不对,还有零呢. 正数的算术平方根是正数,零的算术平方根为零.师非常正确,那负数的算术平方根是否为负数呢?若( 2) 2=4. 则= 2 对吗?或者=2 对吗?生甲不对. 因为算术平方根的定义是一个正数的x 的平方等于a,这个正数x 就叫做 a 的算术平方根,所以算术平方根不可能是负数.师由此看来,定义中的a 和 x 都为正数,即算术平方根是非负数,负数没有算术平方根.用式子表示为( a 0) 为非负数,这是算术平方根的性质. 课堂练习( 一 )P 32 随堂练习1、 2 题 .( 二 ) 补充练习 .一、填空题1. 若
7、一个数的算术平方根是,则这个数是_.2. 的算术平方根是 _.3. 正数 _的平方为的算术平方根为_.4.( 1.44) 2 的算术平方根为_.5.的算术平方根为_ ,=_二、求下列各数的算术平方根,并用符号表示出来:(1)(7.4)2; (2)( 3.9) 2; (3)2.25 ; (4)2. . 课时小结本节课学习了算术平方根的概念,理解了求一个正数的平方和求算术平方根是互为逆运算,求一个非零数的算术平方根,以及算术平方根的性质,即算术平方根是非负数. 课后作业P33 习题 1、 3. 活动与探究1. 一个正方形的面积变为原来的n 倍时,它的边长变为原来的多少倍?2. 一个正方形的面积为原
8、来的 100 倍时,它的边长变为原来的多少倍?解:设原来的正方形边长为 a,面积为 S1,后来的正方形面积为 S2.1. S1=a2,S2=na2(a) 2后来的边长(a) 为原来边长的倍 .2. S1=a2,S2=100a2=(10 a) 2后来的边长10a 为原来边长的10 倍 .板书设计:一、算术平方根的定义算术平方根的性质二、举例三、练习四、作业教学反思:2.2平方根 ( 二)教学目标:( 一 ) 教学知识点1.了解平方根的概念、开平方的概念.2.明确算术平方根与平方根的区别与联系.3.进一步明确平方与开方是互为逆运算.( 二 ) 能力训练要求1. 加强概念形成过程的教学,让学生不仅掌
9、握概念,而且知晓它的理论数据.2. 提倡学生进行自学,并能与同学互相交流与合作,变学会知识为会学知识.3. 培养学生的求同和求异思维,能从相似的事物中观察到PX们的共同点和不同点.( 三 ) 情感与价值观要求通过学生在学习中互相帮助、相互合作,并能对不同概念进行区分,培养大家的团队精神,以及认真仔细的学习态度,为学生将来走上社会而做准备,使他们能在工作中保持严谨的态度,正确处理好人际关系,成为各方面的佼佼者.教学重点:1. 了解平方根、开平方的概念.2. 了解开方与乘方是互逆的运算,会利用这个互逆运算关系求某些非负数的算术平方根和平方根 .3. 了解平方根与算术平方根的区别与联系.教学难点:1
10、.平方根与算术平方根的区别与联系.2.负数没有平方根,即负数不能进行开平方运算的原因.教学方法:讨论比较法 .即主要靠大家讨论得出结论,同时对相似的概念进行比较. 这样不仅能正确区分这些概念,还能使学生学得更扎实.教学过程:. 创设问题情境,引入新课上节课我们学习了算术平方根的概念,性质 . 知道若一个正数x 的平方等于a,即x2=a. 则x 叫a 的算术平方根,记作x=,而且也是非负数,比如正数22=4,则2 叫4 的算术平方根,4叫 2 的平方,但是( 2) 2=4,则2 叫4 的什么根呢?下面我们就来讨论这个问题. 讲授新课1. 平方根、开平方的概念师请大家先思考两个问题 .(1)9 的
11、算术平方根是3,也就是说,3 的平方是9,还有其他的数,它的平方也是9 吗?(2) 平方等于的数有几个?平方等于生 3 的平方也是9.的平方是,的平方也是0.64 的数呢?,即平方等于的数有两个.生平方等于9 的数有两个,平方等于的数有两个,由此可知平方等于0.64 的数也有两个 .师根据上一节课的内容,我们知道了是9 的算术平方根,是的算术平方根,那么3,叫 9、的什么根呢?请大家认真看书后回答.生 3,分别叫9、的平方根 .师那是不是说 3 叫 9 的算术平方根,3 也叫 9 的算术平方根,即9 的算术平方根有一个是 3,另一个是 3呢?生不对 . 根据平方根的定义,一般地,如果一个数x的
12、平方等于a,即2= ,那么这个xxa就叫 a 的平方根 (square root),也叫二次方根,3 和 3的平方都等于9,由定义可知3 和 3 都是 9 的平方根,即9 的平方根有两个3 和 3, 9 的算术平方根只有一个是3.师由平方根和算术平方根的定义,大家能否找出它们有什么相同和不同之处呢?请分小组讨论后选代表回答.生平方根的定义中是有一个数x 的平方等于a,则x 叫a 的平方根,x 没有肯定是正数还是负数或零;而算术平方根的定义中是有一个正数x 的平方等于a,则x 叫 a 的算术平方根,这里的 x 只能是正数. 由此看来都有x2=a,这是它们的相同之处,而x 的要求不同,这是它们的不
13、同之处 .师这位同学分析判断能力特棒,下面我再详细作一总结.平方根与算术平方根的联系与区别联系: (1) 具有包含关系:平方根包含算术平方根,算术平方根是平方根的一种.(2)存在条件相同:平方根和算术平方根都是只有非负数才有. (3)0的平方根,算术平方根都是0.区别:(1)定义不同:“如果一个数的平方等于a,这个数就叫做a 的平方根”;“非负数a 的非负平方根叫 a 的算术平方根” .(2)个数不同:一个正数有两个平方根,而一个正数的算术平方根只有一个.(3)表示法不同:正数 a 的平方根表示为,正数 a 的算术平方根表示为.(4)取值范围不同:正数的平方根一正一负,互为相反数;正数的算术平
14、方根只有一个.师什么叫开平方呢?生求一个数a 的平方根的运算,叫开平方( extraction of square root) ,其中 a 叫被开方数 .师我们共学了几种运算呢,这几种运算之间有怎样的联系呢?请大家讨论后回答.生我们共学了加、减、乘、除、乘方、开方六种运算. 加与减互为逆运算,乘与除互为逆运算,乘方与开方互为逆运算.2. 平方根的性质师请大家思考以下问题 .(1) 一个正数有几个平方根 .(2)0 有几个平方根 ?(3) 负数呢?生第一个问题在前面已作过讨论,一个正数9 有两个平方根3 和 3;因为只有零的平方为零,所以0 有一个平方根是零.因为任何数的平方都不是负数,所以负数
15、没有平方根,例如3 没有平方根 .师太精彩了. 一个正数有两个平方根,且它们互为相反数;0 有一个平方根是0,负数没有平方根 .3. 讲解例题例求下列各数的平方根 .(1)64 ; (2);(3)0.0004; (4)( 25) 2; (5)11.4. 想一想(1)() 2 等于多少? () 2 等于多少?(2)() 2 等于多少?(3) 对于正数 a,() 2 等于多少?. 课堂练习( 一 ) 随堂练习1. 求下列各数的平方根1.44 , 0, 8, 441, 196, 10 42. 填空(1)25 的平方根是 _ ;(2)=_ ;(3)() 2=_.( 二 ) 补充练习1.判断下列各数是否有平方根?并说明理由.(1)( 3) 2; (2)0; (3) 0.01 ; (4) 52; (5) a2;(6) a2 2a+22. 求下列各数的平方根 .(1)121 ; (2)0.01
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版设计印刷委托合同协议
- 行政管理在经济体制改革中的角色试题及答案
- 2024-2025学年八年级道德与法治上册第四单元维护国家利益第九课树立总体国家安全观第2课时维护国家安全教案新人教版
- 2025建筑工程挖孔桩合同(修订版)
- 2025企业借款合同样本
- 行政管理本科综合评价试题及答案
- 公文处理实务技能试题及答案
- Spark大数据挖掘技术研究与应用
- 2025年建筑工程投标策略试题及答案
- 2025临时使用权转让合同示例
- 五年级下册科学说课课件 -1.2 沉浮与什么因素有关 |教科版 (共28张PPT)
- 入学、幼儿园等健康卫生教育洗手知识教育ppt课件
- 流动注射分析仪常见问题解决方案.
- 《出口报关单模板》word版
- 边坡护坡检验批表格模板
- 工会会计制度——会计科目和会计报表(全)
- 新时达-奥莎(sigriner)iAStar-S32电梯专用变频器使用说明书
- 《青年友谊圆舞曲》教案
- 马清河灌区灌溉系统的规划设计课程设计
- 《Monsters 怪兽》中英对照歌词
- 单开、菱形及复式交分道岔的检查方法带图解
评论
0/150
提交评论