




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、离散型随机变量(优质课课件) 在北京奥运男子在北京奥运男子50米步枪三姿决赛中让世界人民震惊米步枪三姿决赛中让世界人民震惊 的一幕,大家知道在这场比赛中发生了什么事情吗?的一幕,大家知道在这场比赛中发生了什么事情吗? 第十枪第十枪 离散型随机变量(优质课课件) 我们从三个方面考虑:我们从三个方面考虑: 取每个值的可能性的大小取每个值的可能性的大小 这些值的平均水平这些值的平均水平 这些值的集中和离散程度这些值的集中和离散程度 分布列分布列 期期 望望 方方 差差 离散型随机变量(优质课课件) 选修选修2-3 第二章第二章 概概 率率 淮北十二中淮北十二中 崔崔 军军 离散型随机变量(优质课课件
2、) 试验试验1 1:某人在射击训练中,射击一次,命中的环数:某人在射击训练中,射击一次,命中的环数. . 试验试验2 2:掷一枚骰子一次,向上的点数:掷一枚骰子一次,向上的点数. . 试验的结果试验的结果 用数字表示用数字表示 试验结果试验结果 试验的结果试验的结果 用数字表示用数字表示 试验结果试验结果 命中命中0 0环环命中命中1 1环环命中命中2 2环环命中命中1010环环 01210 出现出现1 1点点 出现出现2 2点点出现出现3 3点点出现出现4 4点点出现出现5 5点点 1 12 2345 5 出现出现6 6点点 6 6 思考:思考:从上述从上述两个试验中你发现它们有无共同的特征
3、?两个试验中你发现它们有无共同的特征? . . 映映 射射 映映 射射 离散型随机变量(优质课课件) 每一个每一个随机试验的结果随机试验的结果可以用一个可以用一个数字数字来表示;来表示; 1、随机变量随机变量 : 在随机试验中,在随机试验中, 每一个随机试验可能的结果都对应每一个随机试验可能的结果都对应 一个数,一个数, 这种对应称为一个这种对应称为一个随机变量。随机变量。即即 随机变量常用字母随机变量常用字母,.等表示等表示. 每一个每一个数字数字都表示一种都表示一种试验结果试验结果。 观观 察察 总结:总结: 实实 数数 随机试验的结果 映映 射射 随机变量随机变量是从随机试验每一个可能的
4、结果所组成的集合到实是从随机试验每一个可能的结果所组成的集合到实 数集的映射。数集的映射。 (1 1)定义:)定义: (2 2)表示:)表示: 离散型随机变量(优质课课件) 试验结果试验结果 实实 数数 随机变量随机变量 实数实数 实数实数 函数函数 随机变量与函数都是一种随机变量与函数都是一种映射映射; 问题问题1:随机变量与函数有什么区别和联系吗?随机变量与函数有什么区别和联系吗? 随机变量随机变量是把试验结果映为实数;是把试验结果映为实数; 总结归纳 总结归纳 (1)相同点:相同点: (2)不同点:不同点: 函数函数是把实数映为实数;是把实数映为实数; 离散型随机变量(优质课课件) 1、
5、随机抽取一个同学、随机抽取一个同学 ,这个同学对应一个,这个同学对应一个“学号学号” 。 2、抽奖时随机抽取一张兑奖券,奖券对应一个、抽奖时随机抽取一张兑奖券,奖券对应一个“编号编号”。 问题问题2:类比上述例子,你能再举些随机试验的例子吗?类比上述例子,你能再举些随机试验的例子吗? 5、新生婴儿的、新生婴儿的 “性别性别”。 3、经过有交通信号灯的路口,信号灯的、经过有交通信号灯的路口,信号灯的“颜色颜色”。 4、观看一场、观看一场 “足球世界杯足球世界杯”比赛,比赛的结果。比赛,比赛的结果。 6、随机投一枚硬币,出现的结果。、随机投一枚硬币,出现的结果。 问题问题3:任何随机试验的所有结果
6、都可以用数字表示吗?任何随机试验的所有结果都可以用数字表示吗? 离散型随机变量(优质课课件) 试验试验3 3:观看一场足球赛,会出现哪几种结果?观看一场足球赛,会出现哪几种结果? 试验的结果试验的结果 用数字表示用数字表示 试验结果试验结果 赢赢平局平局输输 130 试验试验4 4:掷一枚硬币,可能会出现哪几种结果?掷一枚硬币,可能会出现哪几种结果? 能否用数字来刻画这种随机试验的结果呢?能否用数字来刻画这种随机试验的结果呢? 试验的结果试验的结果 用数字表示用数字表示 试验结果试验结果 正面向上正面向上反面向上反面向上 10 能否用数字刻画随机试验的结果呢?能否用数字刻画随机试验的结果呢?
7、结论:结论:任何随机试验的所有结果都可以用数字表示!任何随机试验的所有结果都可以用数字表示! 还可以用还可以用 其它数字其它数字 表示吗?表示吗? 还可以用还可以用 其它数字其它数字 表示吗?表示吗? 离散型随机变量(优质课课件) 像射击、像射击、掷掷硬币等试验硬币等试验 ,随机变量的,随机变量的 所有取值能够一一列举出来所有取值能够一一列举出来, ,这样的随机变这样的随机变 量称为量称为离散型随机变量离散型随机变量. . 2 2、离散型随机变量的定义:、离散型随机变量的定义: 离散型随机变量(优质课课件) 例例1:已知在已知在10件产品中有件产品中有2件不合格品。现从这件不合格品。现从这10
8、件件 产品中任取产品中任取3件,这是一个随机现象。件,这是一个随机现象。 (1)写成该随机现象所有可能出现的结果;)写成该随机现象所有可能出现的结果; (2)试用随机变量来描述上述结果。)试用随机变量来描述上述结果。 (1)这)这10件产品中有件产品中有2件不合格品,有件不合格品,有8件合格品。因此,从件合格品。因此,从 10件产品中任取件产品中任取3件,所有可能出现的结果是:件,所有可能出现的结果是:“不含不合格不含不合格 品品”、“恰有恰有1件不合格品件不合格品”、“恰有恰有2件不合格品件不合格品”。 解解: (2)令)令X表示取出的表示取出的3件产品中的不合格品数。则件产品中的不合格品数。则X所有所有 可能的取值为可能的取值为0,1,2,对应着任取,对应着任取3件产品所有可能出件产品所有可能出 现的结果。即现的结果。即 “X=0”表示表示“不含不合格品不含不合格品”;“X=1”表示表示“恰有恰有1件不合格品件不合格品”; “X=2”表示表示“恰有恰有2件不合格品件不合格品”; 思考:思考:那么那么”X4”表示的试验结果是什么?表示的试验结果是什么? 思考:思考:抛掷两枚骰子各一次,记第一枚骰子掷出的抛掷两枚骰子各一次,记第一枚骰子掷出的 点数与第二次骰子掷出的点数之和记为点数与第二次骰子掷出的点数之和记为X。 变式:变式:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 橱柜店合伙合同协议书
- 协议书可以当成合同吗
- 普通厨师聘用合同协议书
- 试驾车租车合同协议书
- 2025半年个人租房合同标准范本
- 家电维修行业合同协议书
- 2025工程承包合同样本范本
- 2025现代家居销售合同模板
- 婚庆合同无故终止协议书
- 名言哲理面试题及答案
- 最简单装修合同协议书
- DB32/T 4622.4-2023采供血过程风险管理第4部分:血液成分制备和供应风险控制规范
- 2025年供应链管理专业考试试题及答案
- 消防监护人考试题及答案
- GB 35181-2025重大火灾隐患判定规则
- 2025山东能源集团营销贸易限公司招聘机关部分业务人员31人易考易错模拟试题(共500题)试卷后附参考答案
- 2024年漳州市招聘中小学幼儿园教师真题
- 汉代文化课件图片高清
- 2025河南中考:政治必背知识点
- 互联网公司网络安全工程师入职培训
- 【四川卷】【高二】四川省成都市蓉城名校联盟2023-2024学年高二下学期期末联考数学试题
评论
0/150
提交评论