[整理版]习题解答:数学物理方法(吴崇试编著第二版)_第1页
[整理版]习题解答:数学物理方法(吴崇试编著第二版)_第2页
[整理版]习题解答:数学物理方法(吴崇试编著第二版)_第3页
[整理版]习题解答:数学物理方法(吴崇试编著第二版)_第4页
[整理版]习题解答:数学物理方法(吴崇试编著第二版)_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、Methods of Mathematical PhysicsSolution of Exercise ProblemsYan Zeng March 9, 20085Contents1 Complex Numbers and Complex Functions52 Analytic Functions52.1 Exercises in the text52.2 Exercises at the end of chapter73 Complex Integration104 Inftnite Series134.1 Exercises in the text134.2 Exercises at

2、the end of chapter145 Local Expansion of Analytic Functions185.1 Exercises in the text185.2 Exercises at the end of chapter196 Power Series Solution of Second Order Linear ODE246.1 Exercises in the text246.2 Exercises at the end of chapter247 Residue Theorem and Its Applications337.1 Exercises in th

3、e text337.2 Exercises at the end of chapter388 Function529 Laplace Transform559.1 Exercise in the text559.2 Exercise at the end of chapter5610 Function6211 Complex Functions in Mathematica6812 Equations of Mathematical Physics6813 General Solutions of Linear PDE6913.1 Exercise in the text6913.2 Exer

4、cise at the end of chapter6914 Separation of Variables7214.1 Exercise in the text7214.2 Exercise at the end of chapter7615 Orthogonal Curvilinear Coordinates8315.1 Exercise in the text8315.2 Exercise at the end of chapter8416 Spherical Functions8516.1 Exercise in the text8516.2 Exercise at the end o

5、f chapter8717 Cylinder Functions8717.1 Exercise in the text8717.2 Exercise at the end of chapter8818 Summary of Separation of Variables8818.1 Exercise in the text8818.2 Exercise at the end of chapter8819 Applications of Integral Transforms9020 Method of Greens Function9421 Introduction to Calculus o

6、f Variation9421.1 Exercise in the text9421.2 The RayleighRitz method and its application to the SturmLiouville problem9621.3 Solutions of the exercise problems from Gelfand and Fomin 4, Chapter 89721.4 Exercise at the end of chapter10022 Overview of Equations of Mathematical Physics10222.1 Summary o

7、n the classification of second order linear PDE10222.2 Exercise at the end of chapter103A The Black-Scholes partial differential equation106A.1 Derivation of the Black-Scholes PDE and its boundary conditions106A.2 Simplification of the Black-Scholes PDE via change-of-variable107A.3 Solution of the s

8、implified PDE and the Black-Scholes call option pricing formula108This is a solution manual of selected exercise problems from Methods of Mathematical Physics, 2nd Edition (in Chinese), by Wu Chong-Shi (Peking University Press, Beijing, 2003).1 Complex Numbers and Complex FunctionsExercises are omit

9、ted since they are straightforward.2 Analytic Functions2.1Exercises in the text2.1.Proof.xxxxxyyyif = i . u + iv = v + iu, f = u + iv .So if = fif and only if Cauchy-Riemann equations hold.xy2.2.22z2z2Proof. Since x = 1 (z + z) and y = i (z z), we have x = 1 and y = i . Soz2 x2 y2 x2 y2xy2yx f = . 1

10、 u + i u + i . 1 v + i v = 1 . u v + i . u + v .zTherefore f = 0 if and only if Cauchy-Riemann equations hold.2.3.Proof. Apply Cauchy-Riemann equations. 2.4.Proof. Omitted since the proofs are based on the definition and are similar to those for functions of real variables.122.5.Proof. Let z and z b

11、e any two distinct points in the complex plane. Define f (z) = exp i 2z(z1 +z2) .z2 z1Then f (z) is analytic with f (z1) = f (z2) = 1. But f j(z) = 2i exp .i 2z(z1 +z2) 0, z C. So thez2z1mean value theorem does not apply to f (z). (This example is from 8.)2.6.z2z1Proof. Suppose f (z) = u(x, y) + iv(x, y). Then by Cauchy-Riemann equations, f j(z) = 0 in tt implies all the partial derivatives of u and v with respect to x and y equal to 0 in tt. Using the r

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论