一元一次方程的知识点及经典例的题目,推荐文档_第1页
一元一次方程的知识点及经典例的题目,推荐文档_第2页
一元一次方程的知识点及经典例的题目,推荐文档_第3页
一元一次方程的知识点及经典例的题目,推荐文档_第4页
一元一次方程的知识点及经典例的题目,推荐文档_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、实用标准文案一、知识要点梳理知识点一:方程和方程的解1. 方程:含有的叫方程注意:a.必须是等式b.必须含有未知数。易错点:(1).方程式等式,但等式不一定是方程;(2).方程中的未知数可以用 x表示, 也可以用其他字母表示;(3).方程中可以含多个未知数。考法:判断是不是方程:例:下列式子: .8-7=1+0 (2).1、一元一次方程:一元一次方程的标准形式是:ax+b=O(其中x是未知数,a,b是已知数,且0)。要点诠释: 一元一次方程须满足下列三个条件:J(1)只含有一个未知数;(2)未知数的次数是1次;(3)整式方程.2、方程的解:判断一个数是否是某方程的解:将其代入方程两边,看两边是

2、否相等.知识点二:一元一次方程的解法1、方程的同解原理(也叫等式的基本性质)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。如果a = b,那么進土c; (c为一个数或一个式子)。等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。如果店二,那么鹤三阮;如果口二心仗工0),那么c亡要点诠释:分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。a amm即:(其中0)特别须注意:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)a-3龙+ 410a-3010 + 40化为整数,如方程:0.5一0.2=1.6,将其化为:5一2=1.6。方

3、程的右边没有变化,这要与“去分母”区别开。2、解一元一次方程的一般步骤:解一元一次方程的一般步骤变形 步骤具体方法变形根据注意事项去分 母方程两边都乘以 各个分母的最小公倍 数等式性质21 不能漏乘不含分母的项;2 分数线起到括号作用,去掉分母 后,如果分子是多项式,则要加括号去括号先去小括号,再去 中括号,最后去大括号乘法分配律、 去括号法则1 分配律应满足分配到每一项2 注意符号,特别是去掉括号移 项把含有未知数的 项移到方程的一边,不 含有未知数的项移到 另一边等式性质11 移项要变号;2一般把含有未知数的项移到方程 左边,其余项移到右边合并 同 类 项把方程中的同类项 分别合并,化成

4、“ ax b ”的形式(a 0)合并同类项 法则合并同类项时,把同类项的系数 相加,字母与字母的指数不变未知 数的 系数 化成“ 1”方程两边同除以 未知数的系数 a,得bx a等式性质2分子、分母不能颠倒要点诠释:理解方程ax=b在不同条件下解的各种情况,并能进行简单应用bX a0时,方程有唯一解 懣; a=0, b=0时,方程有无数个解; a=0, b0时,方程无解。牛刀小试例1、解方程(1) y- - 225例2、由两个方程的解相同求方程中子母的值已知方程x 10 4x的解与方程5x 2m 2的解相同,求 m的值.例3、解方程知识与绝对值知识综合题型解方程:|2x -|73精彩文档、经典

5、例题透析类型一:一元一次方程的相关概念已知下列各式:2丄丄2x 5= 1;8- 7= 1 ;x+ y; 2 x y = x2;3x+ y = 6;5x+ 3y + 4z = 0;艸 总=8 :x= 0。其中方程的个数是()A 5B、6 C 7D、8举一反三:变式1判断下列方程是否是一元一次方程:2 2 2(1) -2x +3=x (2) 3x-仁2y(3) x+“ =2 (4) 2x -1=1-2(2x-x)变式2已知:(a-3)(2a+5)x+(a-3)y+6= 0是一元一次方程,求a的值。变式3 (2011重庆江津)已知 3是关于x的方程2x a=1的解,则a的值是()A. 5B. 5C

6、. 7D . 2类型二:一元一次方程的解法解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、系数化为1。如果我们在牢固掌握这一常规解题思路的基础上,根据方程原形和特点,灵活安排解题步骤, 并且巧妙地运用学过的知识,就可以收到化繁为简、事半功倍的效果。1巧凑整数解方程:举一反三:0 4x+0.9_ 0.044-0 3变式解方程:-站O.OZ= 2x 52 巧去括号解方程:4 运用拆项法解方程:举一反三:0.3 + 0.5_ 2.-1变式(2011山东滨州)依据下列解方程3 的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据。3x+5_2z-1解:原方程可变形为2()去分

7、母,得 3 ( 3x+5) =2(2x-1).()去括号,得 9x+15-4x-2.()(),得 9x-4x=-15-2.()n合并,得5X-17.(合并同类项)17(),得 x= 5 .()6 巧组合解方程:思路点拨:按常规解法将方程两边同乘72化去分母,但运算较复杂,注意到左边的第一项和右边的第二项中的分母有公约数3,左边的第二项和右边的第一项的分母有公约数4,移项局部通分化简,可简化解题过程。7 巧解含有绝对值的方程:|x - 2| - 3= 0思路点拨:解含有绝对值的方程的基本思想是先去掉绝对值符号,转化为一般的一元-次方程。对于只含一重绝对值符号的方程,依据绝对值的意义,直接去绝对值

8、符号,化为两 个一元一次方程分别解之,即若 |x| = m,则x = m或x =- m也可以根据绝对值的几何意义 进行去括号,如解法二。举一反三:【变式11 ( 2011福建泉州)已知方程丨小2 ,那么方程的解是 &利用整体思想解方程:2+12(2t+1)+ B “ 门+ + +4 = 0 236参考答案思路点拨:因为含有工的项均在“ 2卞+ 1 ”中,所以我们可以将pH + 1作为一个整体, 先求出整体的值,进而再求卞的值。1. 解析:判断是否为一元一次方程需要对原方程进行化简后再作判断。答案:(1)( 2)( 3)不是,(4)是2. 解析:分两种情况:1,5(1) 只含字母 y,则有(a-

9、3)(2a+5)= 0 且 a-3 0sn 综上,a的值为。 答案:B 9,5211 XT JT = 一 例2. 解:移项,得了 79字(2) 只含字母x,则有a-3 = 0且(a- 3)(2a+5)丰0不可能举一反三解:原方程可变形为4量 + 09) k 20 _ (0 04十 Q 3力汽刃0.0 5200.02 梵 50= 2x 一 5整理,得 8x+ 18-(2 + 15x) = 2x 5,去括号,得 8x + 18-2 15x = 2x 5实用标准文案移项,得 8x 15x 2x =- 5 18+ 2合并同类项,得9x = 21例4解:去括号,得4 V, 2玄_5去小括号,得*+12=

10、1去分母,得(3x 5) 8= 8去括号、移项、合并同类项,得3x = 21依次移项、去分母、去中括号,得依次移项、去分母、去小括号,得-x2 = 22-, x= 48例5解:原方程逆用分数加减法法则,得 442 S -16系数化为1,得X5O移项、合并同类项,得精彩文档例6解:原方程化为去分母,得 100x (13 20x) = 7去括号、移项、合并同类项,得120x = 20两边同除以120,得x =1x 原方程的解为6总结升华:应用分数性质时要和等式性质相区别。可以化为同分母的,先化为同分母, 再去分母较简便。举一反三3a + 5_2a-1【答案】解:原方程可变形为23 (_分式的基本性

11、质_)去分母,得 3( 3x+5)=2(2x-1). (_ 等式性质2_)去括号,得9x+15=4x-2.(去括号法则或乘法分配律_)(移项),得9x-4x=-15-2.( 等式性质1_)合并,得5x=-17.(合并同类项)17(系数化为1),得x= 5.(等式性质2)3忙一15一2戏-3= 2兀-6-卞-刁例7解:移项通分,得9Sa-18= a-U化简,得9*去分母,得 8x 144= 9x 99。移项、合并,得x = 45 o |例8解法一:移项,得|x 2| = 3当x 20时,原方程可化为 x 2= 3,解得x= 5当x 2V 0时,原方程可化为一(x 2) = 3,解得x= 1o所以

12、方程|x 2| 3= 0的解有两个:x = 5或x = 1 o解法二:移项,得|x 2| = 3o因为绝对值等于3的数有两个:3和一3,所以x 2= 3或x 2= 3。 分别解这两个一元一次方程,得解为x= 5或x=1o举一反三1【答案】工严?花二2. 解:5| x|-3| x| = 16-42|x| = 123x= 183x= 9 或 3x= -73(2兀+1)十4(加+ T)十乂姦+1)例9解:移项通分,得:右66化简,得:2x + l = -2移项,系数化1得:戈总结升华:解一元一次方程有一般程序化的步骤, 我们在解一元一次方程时, 既要学会 按部就班(严格按步骤)地解方程,又要能随机应

13、变(灵活打乱步骤)解方程。对于一般解题步 骤与解题技巧来说,前者是基础,后者是机智,只有真正掌握了一般步骤,才能熟能生巧。三、课堂练习、选择题1、已知下列方程:元一次方程的个数是(3x-2=;(2) 0.3x=1; (3)x)-=5x-1;(4) x 2 -4x=3;(5) x=0;(6) x+2y=0.其中22、下列四组变形中,正确的是(A 由 5x+7=0,得 5x= -7由 2x-3=0,得 2x-3+3=0C 由 x=2,得 x=-63由 5x=7,得 x=353、 一个水池有甲、乙两个水龙头,单独开甲水龙头2小时可把空池灌满;单独开乙水龙头3小时可把空池灌满,若同时开放两个水龙头,灌

14、满空池需()65A 小时 B 小时 C2小时 D3小时564、 下列方程中,是由方程7x-8=x+3变形而得到的是()A 7x=x+5B 7x+5=xC6x=11D-8+3=-6x5、下列方程的变形中,是移项的是()B 由 6x=3+5x,得 6x=5x+3A 由 3=5x,得 5x=32 2 x 6 ; x 2y0 .其中一元一次方程的个数是()A. 2B . 3C . 4D . 513、已知关于x的方程a x 5(2 a 1)x的解是x 1,则a的值是 ()A. -5B . -6C . -7D . 814、方程3x 5 2x 1移项后,正确的是()A. 3x 2x 5 1B . 3x 2x

15、1 5C . 3x 2x 1 5D . 3x 2x1 515、方程 2 43,去分母得()32A . 2 2(2 x 4)33(x 1)B .123(2x4)18 3(x 1)C . 12 (2x 4)18(x 1)D .6 2(2x4)9 (x 1)16、 甲、乙两人骑自行车同时从相距 65 km的两地相向而行,2小时相遇,若甲 比乙每小时多骑2.5 km,则乙的时速是().A. 12. 5 km B. 15 kmC. 17. 5 kmD . 20 km17、 某商店卖出两件衣服,每件60元,其中一件赚25%,另一件赔25%,那么 这两件衣服售出后商店是()A 不赚不赔B .赚8元C 亏8元

16、D .赚15元二、填空题:1、 圆的周长为 4,半径为 X,列出方程为 。m| 12、已知方程(m-2) x +5=9是关于x的一元一次方程,则 m =.3、已知代数式 x+2y的值是3,则代数式2x+4y+1的值是。4、3a2m3b4 与 2a6mb4 是同类项,贝 U m = .5、若 x y + (y+1) 2 =0,贝H x-y= .6、某商品的进价为 250元,为了减少库存,决定每件商品按标价打8折销售,结果每件商品仍获利10元,那么原来标价为 7、当x=时,的值是0.三、 一元一次方程应用题(找出等量关系)一 、列一元一次方程解应用题的一般步骤(1)审题:弄清题意 (2)找出等量关

17、系 :找出能够表示本题含义的相等关系 (3)设 出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,?然后利用已找出的等量关系列出方程 ( 4)解方程:解所列的方程,求出未知数的值 ( 5)检验,写答案:检验 所求出的未知数的值是否是方程的解,?是否符合实际,检验后写出答案1、数字问题要搞清楚数的表示方法:一个三位数的百位数字为 a,十位数字是b,个位数 字为c (其中a、b、c均为整数,且 K a9, 0 b 9, 0 c 9)则这个三 位数表示为: 100a+10b+c。例1、 若三个连续的偶数和为 18,求这三个数。例 2、 一个两位数,个位上的数是十位上的数的 2 倍,如果把十

18、位与个位上 的数对调,那么所得的两位数比原两位数大 36,求原来的两位数等量关系:原 两位数 +36=对调后新两位数例3、有一个三位数,个位数字为百位数字的 2倍,十位数字比百位数字大 1,若将此数个位 与百位顺序对调(个位变百位)所得的新数比原数的2倍少 49,求原数。分析:然后抓住数字间或新数、原数之间的关系找等量关系列方程2、日历中的规律:横行相邻两数相差 竖行相邻两数相差 _。例 1、如果今天是星期三,那么一年( 365 天)以后的今天是星期 例 2、在日历表中,用一个正方形任意圈出2x2 个数,则它们的和一定能被整除。A 3 B 4 C 5 D 6例 3、如果某一年的 5月份中,有

19、5个星期五,且它们的日期之和为 80,那么这 个月的 4 号是星期几?3、等积变形问题常用等量关系为:形状面积变了,周长没变;原料体积二成品体积。例 1、用直径为 4cm 的圆钢,锻造一个重 0.62kg 的零件毛坯,如果这种钢每立 方厘米重 7.8g ,应截圆钢多长?例2.用直径为90mm的圆柱形玻璃杯(已装满水)向一个由底面积为125 125mm2内高为81mm的长方体铁盒倒水时,玻璃杯中的水的高度下降多少mm (结果保留整数314)4、和、差、倍、分问题:倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几, 增长率”来体现。多少关系:通过关键词语“多、少、和、差、不足、剩

20、余”来体现。( 1)劳力调配问题:这类问题要搞清人数的变化 .例 1. 某厂一车间有 64 人,二车间有 56 人。现因工作需要,要求第一车间人数 是第二车间人数的一半。问需从第一车间调多少人到第二车间?例 2甲、乙两车间各有工人若干,如果从乙车间调 100人到甲车间,那么甲车间 的人数是乙车间剩余人数的 6倍;如果从甲车间调 100人到乙车间, 这时两车间的 人数相等,求原来甲乙车间的人数。( 2) 配套问题:例1、某车间有 28名工人生产螺栓和螺母,每人每小时平均能生产螺栓 12个或螺 母1 8个,应如何分配生产螺栓和螺母的工人, 才能使螺栓和螺母正好配套 (一个 螺栓配两个螺母)例2.机

21、械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10 个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、 小齿轮,才能使每天加工的大小齿轮刚好配套?分析:列表法每人每天人数数量大齿轮16个x人16x小齿轮10个85 x人10 85 x等量关系:小齿轮数量的2倍=大齿轮数量的3倍解:设分别安排x名、85 x名工人加工大、小齿轮3(16x)210(85 x)48x1700 20x68x1700x 2585 x 60人 答:略(3) 分配问题:例1.学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空 出两个房间。求房间的个数和学生的人数。例2.三

22、个正整数的比为1:2:4,它们的和是84,那么这三个数中最大的数是几? (比例分配问题 常用等量关系:各部分之和=总量。)(4) 年龄问题:例1、甲比乙大15岁,5年前甲的年龄是乙的年龄的两倍, 乙现在的年龄是多少 岁?例2、小华的爸爸现在的年龄比小华大 25岁,8年后小华爸爸的年龄是小华的 3 倍多5岁,求小华现在的年龄。5、工程问题工程问题中的三个量及其关系为:工作总量 =工作效率X工作时间经常在题目中未给出工作总量时,设工作总量为单位1。例1. 一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作 3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工 程?

23、分析设工程总量为单位1,等量关系为:甲完成工作量+乙完成工作量=工作 总量。1 1解:设乙还需x天完成全部工程,设工作总量为单位1,由题意得,(亦虫)xX3+12=1,例2、在西部大开发中,基础建设优先发展,甲、乙两队共同承包了一段长 6500 米的高速公路工程,两队分别从两端施工相向前进,甲队平均每天可完成480米,乙队平均每天比甲队多完成 220米,乙队比甲队晚一天开工,乙队开工几天 后两队完成全部任务?&打折销售问题(1) 销售问题中常出现的量有:进价、售价、标价、禾U润等(2) 基本关系式: 利润=售价一进价;售价=标价X折数;利润率=利润/进价。由可得出利润二标价X折数一进价。由可得

24、出利润率=。 市场经济问题(1) 商品利润二商品售价一商品成本价 (2)商品利润率二 品利润 X 100% 商品成本价(3) 商品销售额二商品销售价X商品销售量(4) 商品的销售利润=(销售价-成本价)X销售量(5) 商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售, 即按原标价的 80%出售例 1 、一件衣服标价是 200 元,现打 7 折销售。问:买这件衣服需要多少钱?若 已知这件衣服的成本 (进价)是 115元,那么商家卖出这件衣赚了多少钱?利润 是多少?例 2、 某商场售货员同时卖出两件上衣, 每件都以 135 元售出,若按成本计算, 其中一件赢利 25%,另一件亏损 2

25、5%,问这次售货员是赔了还是赚了?7、行程问题。(行程问题可以采用画示意图的辅助手段来帮助理解题意,并注 意两者运动时出发的时间和地点)要掌握行程中的基本关系:路程二速度X时间。 相遇问题(相向而行),这类问题的相等关系是:甲走的路程+乙走的路程=全路程 追及问题(同向而行),这类问题的等量关系是:同时不同地:甲的时间 =乙的时间 甲走的路程 -乙走的路程 =原来甲、乙相距的 路程同地不同时;甲的时间 =乙的时间 -时间差甲的路程 =乙的路程解此类题的关键是抓住甲、 乙两物体的时间关系或所走的路程关系, 一般情况下问题就能迎刃而解。并且还常常借助画草图来分析,理解行程问题。例 1. 甲、乙两站

26、相距 480公里,一列慢车从甲站开出,每小时行 90公里, 一列快车从乙站开出,每小时行 140 公里。(1)慢车先开出 1 小时,快车再开。两车相向而行。问快车开出多少小时后两 车相遇?(2) 两车同时开出,相背而行多少小时后两车相距 600公里?(3) 两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距 600 公里?(4) 两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5) 慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时 追上慢车?此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。故可结 合图形分析。(1)分析:相遇问题,画图表

27、示为:A V甲乙等量关系是:慢车走的路程+快车走的路程=480公里。解:设快车开出x小时后两车相遇,由题意得,140x+90(x+1)=480解这个方程,230x=39016/. x=1 23答:略.(2)分析:相背而行,画图表示为:600i11甲乙等量关系是:两车所走的路程和+480公里=600公里。解:设x小时后两车相距600公里,由题意得,(140+90)x+480=600解这个方程,230x=12012X=23答:略.(3)分析:等量关系为:快车所走路程慢车所走路程 +480公里=600公里。解:设x小时后两车相距 600公里,由题意得,(140 90)x+480=60050x=120

28、 x=2.4答:略.(4)分析:追及问题,画图表示为:甲乙等量关系为:快车的路程=慢车走的路程+480公里。解:设x小时后快车追上慢车。由题意得,140x=90x+480解这个方程,50x=480 x=9.6答:略.(5)分析:追及问题,等量关系为:快车的路程 =慢车走的路程+480公里。解:设快车开出x小时后追上慢车。由题意得,140x=90(x+1)+48050x=570 解得,x=11.4答:略. 环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程 和二一圈的路程;同地同向而行的等量关系是两人所走的路程差=一圈的路程。航行问题:顺水(风)速度=静水(风)速度+水流(风)速度

29、逆水(风)速度=静水(风)速度水流(风)速度例:一艘船在两个码头之间航行,水流速度是 3千米每小时,顺水航行需要2 小时,逆水航行需要3小时,求两码头的之间的距离?抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.1、A、B两地相距150千米。一辆汽车以每小时50千米的速度从A地出发,另 一辆汽车以每小时40千米的速度从B地出发,两车同时出发,相向而行,问经 过几小时,两车相距30千米?2、甲、乙两人练习100米赛跑,甲每秒跑7米,乙每秒跑6.5米,如果甲让乙 先跑1秒,那么甲经过几秒可以追上乙?3、一架飞机飞行在两个城市之间,顺风要 2小时45分,逆风要3小时,已知风 速是

30、20千米/小时,则两城市间的距离为多少?4、一列火车以每分钟1千米的速度通过一座长400米的桥,用了半分钟,则火 车本身的长度为多少米?5、火车用26秒的时间通过一个长256米的隧道(即从车头进入入口到车尾离开 出口),这列火车又以16秒的时间通过了长96米的隧道,求列车的长度。8、银行储蓄问题 顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称 本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。利息的20%寸利息税利息二本金X利率X期数本息和二本金+利息利息税=利息X税率(20%利润二每个期数内的利息 x 100%利息二本金X利率X期数本金注意利率有日利率、月利率和年利率,年利率=月利率X12=0利率X 365。本息和=本金+ =本金+ XX=( 1 +X)X本金(不考虑利息税)本息和=本金+ =本金+XXX( 1 )(考虑利息税例9.某同学把250元钱存入银行,整存整取,存期为半年。半年后共得本息和252.7元,求银行半年期的年利率是多少?(不计利息税)分析:等量关系:本息和二本金X( 1+利

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论