版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精品文档第七章 刚体力学7.1.1设地球绕日作圆周运动. 求地球自转和公转的角速度为多少rad/s? 估算地球赤道上一点因地球自转具有的线速度和向心加速度.估算地心因公转而具有的线速度和向心加速度(自己搜集所需数据) .解答7.1.2汽 车 发 动机 的 转 速 在12s内 由1200rev/min增加 到3000rev/min. (1)假设转动是匀加速转动,求角加速度.(2) 在此时间内,发动机转了多少转?解答( 1)( 2)V2(3000 1200)1/ 601.57(rad / s2 )Vt1222( ) 2 (3000212002 )0302639(rad)2215.7所以 转数=26
2、392420(转 )7.1.3某发动机飞轮在时间间隔t 内的角位移为球 t 时刻的角速度和角加速度 . 解答7.1.4 半径为 0.1m 的圆盘在铅直平面内转动,在圆盘平面内建立 O-xy 坐标系,原点在轴上 .x 和 y 轴沿水平和铅直向上的方向 . 边缘上一 点 A 当 t=0 时 恰 好 在 x 轴 上 , 该 点 的 角 坐 标 满 足1.2t t 2 ( : rad,t: s). 求( 1)t=0 时,(2)自 t=0 开始转 45o 时,(3)转过 90o 时, A 点的速度和加速度在 x 和 y 轴上的投影 .解答vt0,?1.2, A Rj0.12j(m/s).(1)x0, y
3、0.12(m/s)(2)45o时,1.2tt 2, 得t0.47(s)42.14(rad/s)v v v由 v AR(3)当90o 时,由7.1.5 钢制炉门由两个各长 1.5m 的平行臂 AB和 CD支承,以角速度 10rad/ s 逆时针转动,求臂与铅直 45o 时门中心 G的速度和加速度 .解答因炉门在铅直面内作平动,门中心G的速度、加速度与B 或 D.精品文档点相同。所以:7.1.6收割机拔禾轮上面通常装4 到 6 个压板 . 拔禾轮一边旋转,一边随收割机前进 . 压板转到下方才发挥作用,一方面把农作物压向切割器,另一方面把切割下来的作物铺放在收割台上, 因此要求压板运动到下方时相对于
4、作物的速度与收割机前进方向相反 .已知收割机前进速率为 1.2m/s ,拔禾轮直径 1.5m,转速 22rev/min, 求压板运动到最低点挤压作物的速度 .解答取地面为基本参考系,收割机为运动参考系。取收割机前进的方向为坐标系正方向7.1.7 飞机沿水平方向飞行,螺旋桨尖端所在半径为 150cm,发动机转速 2000rev/min. (1)桨尖相对于飞机的线速率等于多少?( 2)若飞机以 250km/h 的速率飞行, 计算桨尖相对于地面速度的大小, 并定性说明桨尖的轨迹 .解答取地球为基本参考系,飞机为运动参考系。( 1)研究桨头相对于运动参考系的运动:( 2)研究桨头相对于基本参考系的运动
5、:由于桨头同时参与两个运动:匀速直线运动和匀速圆周运动。故桨头轨迹应是一个圆柱螺旋线。7.1.8 桑塔纳汽车时速为166km/h. 车轮滚动半径为0.26m. 自发动机至驱动轮的转速比为 0.909.问发动机转速为每分多少转 .解答设发动机转速为 n发 ,驱动轮的转速为 n轮 。n发0.909,n发0.909n轮由题意: n轮(1)166103,汽车的速率为60166103n轮(2)2 R轮60n发0.909 166 1031.54 103 (rev / min)(2)代入( 1)2 R轮607.2.2 在下面两种情况下求直圆锥体的总质量和质心位置 . (1)圆锥体为均质;(2)密度为 h 的
6、函数 :ho (1L ), o 为正常数 .解答.精品文档建立如图坐标O-x, 由对称轴分析知质心在 x 轴上。xcxdmxdvxdvdmdvdv由得:L(a / L) 2dxx3 Lxc0124(1)3a Lmv1a2L质量3L( ax) 20 (1h )dxx4xc0LLL(h=L x)ha250 (1dx(2))(x)0LLm00 (1 h ) ( a x)2dx0 a2 L质量LL47.2.3 长度为 l 的均质杆,令其竖直地立于光滑的桌面上, 然后放开手,由于杆不可能绝对沿铅直方向,故随即到下 . 求杆子的上端点运动的轨迹(选定坐标系,并求出轨迹的方程式) .解答建立坐标系, 水平方
7、向为 x 轴,竖直方向为 y 轴. 杆上端坐标为(x,y ), 杆受重力、地面对杆竖直向上的支承力,无水平方向力。r r由Fi外 acm (质心运动定理)质心在杆的中点,沿水平方向质心加速度为零。开始静止,杆质心无水平方向移动。由杆在下落每一瞬时的几何关系可得:即杆上端运动轨迹方程为:7.3.1 (1)用积分法证明:质量为m长为 l的均质细杆对通过中心且1 m l 2与杆垂直的轴线的转动惯量等于 12.解答建立水平方向 ox 坐标(2)用积分法证明:质量为m、半径为 R 的均质薄圆盘对通过中心且在盘面内的转动轴的转动惯量为解答1 mR 24 .令 xRsin4mR32x 2 )2 dx,I2(
8、R或3R0利用公式.精品文档7.3.2 图示实验用的摆, l0.92m , r 0.08m ,m l 4.9kg , m r 24.5kg ,近似认为圆形部分为均质圆盘,长杆部分为均质细杆. 求对过悬点且与摆面垂直的轴线的转动惯量 .解答将摆分为两部分:均匀细杆(I1 ),均匀圆柱( I 2 )则II1 I21 m l L2 B 0.14(kg gm 2 )I1=31 m r r2m r (Lr) 2I2= 2(用平行轴定理)I=0.14+2.51=2.65(kg gm 2 )7.3.3 在质量为 M半径为 R的均质圆盘上挖出半径为r 的两个圆孔,圆孔中心在半径 R的中点,求剩余部分对过大圆盘
9、中心且与盘面垂直的轴线的转动惯量 .解答设未挖两个圆孔时大圆盘转动惯量为I 。如图半径为 r 的小圆盘转动惯量为I1 和 I 2 。则有 I xII1 I 2( I1 I2 )7.3.5一转动系统的转动惯量为I8.0kg.m2,转速为41.9rad / s ,两制动闸瓦对轮的压力都为392N,闸瓦与轮缘间的摩擦系数为0.4 ,轮半径为 r0.4m ,从开始制动到静止需要用多少时间?解答7.3.6 均质杆可绕支点 O转动,当与杆垂直的冲力作用某点A 时,支点 O对杆的作用力并不因此冲力之作用而发生变化, 则 A 点称为打击中心 . 设杆长为 L,求打击中心与支点的距离 .解答vv杆不受 F 作用
10、时,支点O对杆的作用力 N ,方向竖直向上,大小v v为杆的重量。依题意,当杆受力 F时, N 不变。建立如图坐标系, z 轴垂直纸面向外。由质心运动定理得:( Ox 方向投影)Fmac (质心在杆中点)(1)FOA I01 mL 2(2)由转动定理得:3有角量与线量的关系.精品文档ac1 L(3)21 mL22OA31L(1)(2)(3)联立求解L327.3.7现在用阿特伍德机测滑轮转动惯量. 用轻线且尽可能润滑轮轴 . 两端悬挂重物质量各为m 10.46kg ,且 m 2 0.5kg . 滑轮半径为0.05m . 自静止始,释放重物后并测得5.0s内 m 2 下降 0.75m . 滑轮转动
11、惯量是多少?解答分析受力。建立坐标系,竖直向下为 x 轴正方向,水平向左为 y 轴正方向。 z 轴垂直纸面向里。根据牛顿第二定律,转动定理,角量与线量关系可列标量方程组:已知 a1R ,a 1 a2 ,T1 T1 ,T 2 T2 ,Vx122at(其中 m 1,m 2,R, Vx, t为已知)求解上列方程组:7.3.8 斜面倾角为 ,位于斜面顶端的卷扬机鼓轮半径为 R,转动惯量为 I ,受到驱动力矩 M,通过绳索牵引斜面上质量为 m的物体,物体与斜面间的摩擦系数为 ,求重物上滑的加速度 . 绳与斜面平行,不计绳质量 .解答分析受力及坐标如图。 z 轴垂直纸面向外。列标量方程组:Tmgsinmg
12、 cosma( 1)MTR=I( 2)a R( 3)T T( 4)T mg sinmg cosmaR(M mgR sinmgR cos )解得:a=2I mR7.3.9利用图中所示装置测一轮盘的转动惯量,悬线和轴的距离为r. 为减小因不计轴承摩擦力矩而产生的误差,先悬挂质量较小的重物m 1 ,从距地面高度 h 处由静止开始下落,落地时间为t 1 ,然后悬挂质.精品文档量较大的重物 m 2 ,同样由高度 h 下落,所需时间为 t 2 ,根据这些数据确定轮盘的转动惯量 . 近似认为两种情况下摩擦力矩相同 .解答分析受力及坐标如图。z 轴垂直纸面向里。列方程:M 阻m1 r(g2h2h2) I 2解
13、得t1rt1m1 r(g2hI2hm 2 r(g2h2h2 )22 )I 2即t1rt 1t2rt27.4.1 扇形装置如图,可绕光滑的铅直轴线O 转动,其转动惯量 I为 . 装置的一端有槽,槽内有弹簧,槽的中心轴线与转轴的垂直距离为 r. 在槽内装有一小球,质量为 m,开始时用细线固定,只弹簧处于压缩状态 . 现用燃火柴烧断细线, 小球以速度 vo弹出 . 求转动装置的反冲角速度 . 在弹射过程中,由小球和转动装置构成的系统动能守恒否?总机械能守恒否?为什么?(弹簧质量不计)解答取小球和转动装置为物体系, 建立顺时针为转动正方向。 在弹射过程中,物体系相对于转动轴未受外力矩, 故可知物体受对
14、转轴的角动量守恒。有Irmrm00 0,I动能不守恒,原因是弹性力对系统作正功,物体系动能增加。总机械能守恒。原因是此过程中无耗散力做功。应有守恒关系式:7.4.2 质量为 2.97kg ,长为 1.0m 的均质等截面细杆可绕水平光滑的轴线 O转动,最初杆静止于铅直方向 . 一弹片质量为 10kg,以水平速度 200m/s 射出并嵌入杆的下端,和杆一起运动,求杆的最大摆角 .解答取子弹和杆为物体系。分两个过程。过程 1:子弹嵌入前一瞬时开始到完全嵌入时为止。此过程时间极短,可视为在原地完成。此时受力为vv vmg , Mg, N 为转轴对杆的支承力,对于轴,外力矩为零。有角动量守恒。规定逆时针
15、为转轴正方向。得 :解得:ml 202.0(rad / s)1l 2l 2M3m过程 2:由过程 1 末为始到物体系摆至最高点为止。此过程中一切耗散力做功为零。 故物体系机械能守恒。 取杆的最低点为重力势能零点。.精品文档l Mg1 ml 221 1 M l 22l (1 cos )mgl (1 cos )Mgl Mg有 222 32212(1 Mm) l 2cos1230.864( Mm)g l2解得30.3o7.4.3 一质量为 m 1,速度为 v1 的子弹沿水平面击中并嵌入一质量为m 2 99m 1 ,长度为 L 的棒的端点,速度 v 1 与棒垂直,棒原来静止于光滑的水平面上 . 子弹击
16、中棒后共同运动,求棒和子弹绕垂直于平面的轴的角速度等于多少?解答取 m1 与 m 2 为物体系。此物体系在水平面内不变外力矩。故角动量守恒,规定逆时针为转动正方向。设 m1 嵌入后物体系共同质心为c , c 到棒右端距离为 r ,棒自身质心为 c 。m1rm 2 ( Lr)( 质心公式)由2有物体系对点的角动量守恒可得:解得0.058 1 / L,半径为几千米,质量与太阳的质量大致相等,转动角速率很大. 试估算周期为 50ms的脉冲星的转动动能 . (自己查找太阳质量的数据)解答7.5.1 10m 高的烟囱因底部损坏而倒下来,求其上端到达地面时的线速度 . 设倒塌时底部未移动 . 可近似认为烟
17、囱为细均质杆 .解答7.5.2用四根质量各为m长度各为 l 的均质细杆制成正方形框架, 可绕其一边的中点在竖直平面内转动,支点O 是光滑的 . 最初,框架处于静止且 AB边沿竖直方向,释放后向下摆动,求当 AB边达到水平时,框架质心的线速度VC 以及框架作用于支点的压力 N.解答框架对 O点的转动惯量:在框架摆动过程中,仅受重力和支点的支撑力, 重力为保守力,支撑力不做功, 故此过程中框架的机械能守恒。 取过框架中心的水平线为重力势能零点:4mgl1 I 02有2 2.2l12 g4mgI07 l12g7lcl12gl解得:2l27框架转到 AB水平位置时,故支点 O对框架的作用力由质心运动定
18、理得:v精品文档3 gl7即0(水平方向)M 0 0,0. acvN ,仅有法向分量。框架作用支点的力N与 N 是作用力与反作用力。7.5.3 由长为 l ,质量各为 m的均质细杆制成正方形框架, 其中一角连于光滑水平转轴 O,转轴与框架所在平面垂直 . 最初,对角线 OP处于水平,然后从静止开始向下摆动 . 求对角线 OP与水平成 45o 时 P 点的速度,并求此时框架对支点的作用力 .解答框架对 O点转动惯量由机械能守恒:r先求支点 O对框架作用力 N ,M o2mgl3gI o10l25lM o I om由转动定理3由质心运动定理:投影得:N n22 2 mg解得:5tg设 N与 ?i方
19、向夹角为 ,则 7.5.4 质量为 m长为 l 的均质杆,其桌面上, A端用手支住, 使杆成水平 .A 端,在此瞬时,求:(1)杆质心的加速度,(2)杆 B 端所受的力 .解答N n11oN,79.72B 端放在突然释放取杆为隔离体,受力分析及建立坐标如图。规定顺时针为转动正方向。依据质心运动定理有:N mg mac(1).精品文档mg lI B依据转动定理:2lac依据角量与线量关系:22N nmacnmcl / 2此外,I B1 ml 23由 c0. c0,N n 0(2)(3)(4)联立上述四个方程求得:7.5.5 下面是均质圆柱体在水平地面上作无滑滚动的几种情况,求地面对圆柱体的静摩擦
20、力 f.( 1)沿圆柱体上缘作用以水平拉力 F,柱体作加速滚动 .( 2)水平拉力 F 通过圆柱体中心轴线,柱体作加速滚动 .( 3)不受任何主动力的拉动或推动,柱体作匀速滚动 .( 4)在主动力偶矩 的驱动下作加速滚动 . 设柱体半径为 R. 解答取均匀圆柱体为隔离体,建立坐标系,水平向右为x 轴正方向,vz 轴垂直纸面向里。假设f c 方向水平向右。( 1)fF得3 (符号表示实际方向与假设方向相反)( 2)fF得 3 (符号表示实际方向与假设方向相同)(3)2M得f(符号表示实际方向与假设方向相反)3R7.5.6板的质量为 M,受水平力 F 的作用,沿水平面运动 . 板与水平面间的摩擦系
21、数为. 在板上放一半径为 R质量为 M 2 的实心圆柱,此圆柱只滚动不滑动 . 求板的加速度 .解答设所求板对地的加速度为a,(方向与vF 相同)。以板为参照系 ( 非惯性系 ) 。取圆柱体为隔离体, 分析受力如图, z 轴垂直纸面向里。依质 心 运 动 定 律 有 : f0 f 2 M 2ac板.精品文档(1)f 0 R I 01M2R2依据转动定理有:2(2)依 据 角 量 与 线 量 关 系 有 : ac板R(3)此外: N 2M 2 g(4)f 2 m2a(5)取板为隔离体,受力如图,并建立如图坐标系。列标量方程有:N1N 2Mg=0(6)Ff 0ff10(7)f1Ma(8)fN 1(
22、9)N 2N 2f 0f 0(10)(11)将上述十一个方程联立求解得:7.5.7 在水平桌面上放置一质量为m的线轴,内径为 b,外径为 R,1mR 2. 线轴其绕中心轴转动惯量为 3. 线轴与地面间的静摩擦系数为受一水平拉力F,如图所示 .( 1)使线轴在桌面上保持无滑滚动之 F 最大值是多少?( 2)若 F 与水平方向成 角,试证, cos b/ R 时,线轴向前滚动;cos b/ R 时,线轴线后滚动 .解答取线轴为隔离体。建立坐标系,水平向右为x 正方向, z 轴垂直纸面向里。(1)依据质心运动定理有:F f mac(1)依据对质心轴的转动定理有:fR Fb I 01 mR 2(2)3由角量与线量的关系得:ac R(3).精品文档上述三式联立求解得:欲保持无滑滚动得:4Rmgff maxN= mg即Fmax3bR(2)列标量方程解得: ac3F(R cosb)4mR讨论:当
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025金融科技行业劳动合同范本示例
- 2025年玉米采购合同范本
- 2025年短视频联合推广协议
- 2025年短视频电商直播收益分成协议
- 2025年短视频带货合作协议(MCN机构)
- 2025医疗设备采购与销售合同协议书范本
- 2025餐厅服务员劳务合同
- 2025地下车库租赁合同样本
- 2025年心理咨询师考试题库及答案(历年真题)
- 水库赔偿协议书
- 2025年高级工程师职业资格考试《土建工程设计与施工管理》备考题库及答案解析
- 广东省深圳市南山区实验教育集团2026届九上物理期中考试试题含解析
- 公路养护工程安全生产责任制
- 2025年6月检验科生物安全培训考核试题及答案
- SF-36健康调查量表(含excel版)
- 2025年及未来5年中国非开挖技术市场运行态势及行业发展前景预测报告
- 2025《传染病防治法》综合培训试题及答案
- 县成品油流通智慧监管平台项目服务方案投标文件(技术方案)
- 2025工业互联智能工厂边缘云整体解决方案
- 广东省深圳市宝安区2024-2025学年三年级上学期期中数学试题(含答案)
- 从认知构式视角解析英汉语非宾格现象:差异与共性的探究
评论
0/150
提交评论