计算机视觉的理论框架探索论文_第1页
计算机视觉的理论框架探索论文_第2页
计算机视觉的理论框架探索论文_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、计算机视觉的理论框架探索论文 计算机视觉的理论框架探索 引言 在计算机系统中,计算机视觉是通过模拟人类视觉,从而对不同事物进行相关描述, 以获得更全面的信息。随着计算机视觉在文字识别、漫步机器人和导航中的成功应用,计 算机视觉的理论框架研究显得越来越重要,对丁-促进我国计算机应用技术水平不断提升具 有重要意义。 1计算机视觉的理论框架 随着计算机视觉的不断研究和总结,从二维景物图像发展到三维景物图像,计算机视 觉的理论框架主要有如下三个: 1.1计算视觉理论框架在七十年代中期,有关研究人员提出了第一个计算机视觉理 论框架,即计算视觉理论,将视觉过程看作是信息处理过程,并将信息处理过程分为三个

2、不同的层次,它们分别是计算理论层次、数据结构层次和硬件实现层次,从而对计算机视 觉进行全面分析。根据相关数据和资料显示,视觉是对图像的位置、形状和特征等进行描 述,因此,计算理论层成为了研究的重点,进而将视觉过程看作是从二维图像信息中对图 像进行重塑,从而将三维物体的形状、位置和空间等反映出來,最终形成三维图像。 由此可见,早期的视觉处理是从输入的二维图像中获得二维要素图,即图像中强度变 化较强时的位置和儿何分布情况、结构等;中期的视觉处理是从二维要素图中获得二点五 维图,即以观察者为中心,对表面的法向、深度和不连续的轮廓等进行观测。虽然二点五 维包含的深度信息比二维要多,但还不是真正意义上的

3、三维表示,而仅仅是有多个相对独 立的视觉模块组成的,在相关研究中被称作是“shape from X”模型,将运动视觉、立体 视觉等融入到其中;后期视觉处理是指从二点五维图中获取物体的三维描述,从而将场景 中的物体识别处理,确定物体的确切位置和姿态。 1.2基丁知识的视觉理论框架在计算机视觉理论中,基丁知识的视觉理论框架,是 围绕感知特征群集來进行相关研究的,从而通过人类感知的经验來描述目标,最终确定物 体在场景中的真正位置、形态等。相关研究人员认为,基于知识的视觉理论可以通过知识 的引导來直接完成三维重建,以将相对应观察方向保持不变动二维特征称作是非偶然性聚 类,而人体中视觉识别发挥重要作用的

4、一种感知组织,通过对非偶然性聚类的检测,可以 有效辨别出目标。 因此,首先是利用感知组织來提取图像中相对于观察方向大范围变化,并XL保持不变 的分组和结构等;然后,利用概率排队的方法來进行模型匹配,从而缩小检测空间;最后, 通过对观察点的未知求解和寻找模型参数对应关系,使三维模型的投影和图像得到最合适 的匹配,最终完成三维重建。 1.3主动视觉理论框架第三种计算机视觉理论框架是中东视觉理论矿坑,是根据人 类视觉的主动性特征提出的。由于人类视觉会根据口己的意识选择视野范围内所看见的事 物的主次,从而移动身体、转向或者改变视角,因此,人们的视觉过程是与所在环境交互 感知和动作的过程。在计算机视觉理

5、论框架的主动视觉框架中,视觉行为不需耍三维物体 的相关精确信息,就可以完成物体重建。主动视觉系统根据所需的物体对象特征、分析结 果和当前要求等,通过控制摄像机的相关操作,如取向、位置、焦距等,就可以完成相关 处理任务和信息交换。与此同时,主动视觉还可以用改变摄像机的参数和处理摄像后的数 据等,使图像的时间、空间和分辨率等发生变化,从而增强图像的感知效果。 2计算机视觉理论框架存在的问题 现代发展中,计算机视觉理论框架的提出,是计算机视觉领域研究的重要突破,而在 这个发展过程中,存在着如下一些问题,影响计算机视觉理论框架的更完善构建。由丁视 觉过程是成像过程的逆过程,存在着混合、投影、噪音和畸变

6、等干扰因素,使图像三维重 建存在不稳定性和不确定性,因此,从一幅景象到多幅景象的重建存在很多困难,使三维 图像的准确性和通用性大大降低。并1L,计算视觉理论认为输入是彼动的,整个视觉过程 口下而上不存在反馈,处理目的没有发生任何改变,因此,对物体的确切位置和形状有一 定要求。 另外,有关学者提出计算机视觉理论框架没有充分运用知识,对知识表达没有给以高 度重视,从而忽略知识推理和知识库的构建,没有对空间约束和场景假设进行充分考虑, 从而使场景假设受到局限。并XI,没有进行多次的分析和试验,致使计算机视觉理论框架 构建存在很多问题。 基于知识的理论框架忽略了计算视觉理论的重要性,认为人类视觉和重建

7、无关,然而, 在进行物体尺寸判断、物体距离估算等情况时,光靠识别是不够的,必须要依靠三维重建, 才能将物体的确切位置、形状等准确地描述出來。 主动视觉理论没有排除三维重建,通过改变摄像机的参数和角度等,來改变物体空间、 时间和分辨率的感知效果,从而对图像出來过程进行相关约束,使很多不稳定和不合适的 问题得到有效解决,最终完成三维重建。运用主动视觉理论框架,可以大大降低问题的难 度,但主动视觉理论框架仍存在缺乏高层知识指导的问题,导致主动视觉框架还不够完整, 使计算机视觉理论框架构建受到一定影响。 3计算机视觉理论框架构建的新发展 在计算机视觉理论框架的构建过程中,计算视觉理论比较系统地解释了从

8、二维图中获 取三维物体形态的方法和可能性,而基于知识的实际理论和主动视觉理论则对计算视觉理 论进行了补充和进一步提升。因此,计算机视觉理论框架的新发展,可以以计算视觉理论 为主,将基丁知识的视觉理论和主动视觉理论结合到一起,从而使计算机视觉系统框架变 得更加完善。 在实际应用过程中,将早期视觉处理分为图像分割、图像预处理和二维模式识别等, 以对二维图像进行滤波降噪和图像增强等,因此,不需要知识引导和控制视觉目的。在图 像分割、二维图像模式识别、中期处理、后期处理和三维模式识别的过程中,没有知识引 导和模型匹配,最终得出的图像效果会更好、更完整。在早期视觉处理和后期视觉处理中, 二维模式和三维模式的识别,需要根据物体的实际情况來确定,由丁特征、模型等各不一 样,所以,二维物体和三维物体的描述方式也各不相同。 由二维信息的质量会影响三维信息的效果,因此,在计算机视觉中,二维信息应当 给以高度重视。而模型库和视觉目的的应用,为计算机视觉理论框架构建提供了更多的信 息。由此可见,在计算机视觉系统中,通过视觉目的來进行物体形象、位置等的输出判断, 同时,运用视觉目的可以对图像分割和二维模式识别、中期视觉处理、后期视觉处理和三 维模式识别等进行有效控制,最终使三维重建的图像信息更加完整。 4结束语 随着高科技信息技术的不断推广,计算机视觉理论框架的研究已经成为目前重点关注 对象之一,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论