




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、整式的加减 知识要点归纳 一、基础知识: 知识点一:用字母表示数 用字母表示数就是用字母或含字母的式子表示数和数量关系,它 是从算术到代数的重要转变。而用字母表示数之后,有些数量之间的 关系用含有字母的式子表示,看上去更加简明,更具有普遍意义了.举 例:如果用a、b表示任意两个有理数,那么加法交换律可以用字母 表示为:a+ b= b+a.乘法交换律可以用字母表示为: ab= ba 要点诠释: (1) 当数字与字母相乘时,乘号通常省略不写或简写为“”, 1 且数字在前,字母在后,若数字是带分数,要化为假分数,如丐x a写成3 a或I a; (2) 字母与字母相乘时,乘号通常省略不写或简写为“ ”
2、,如 ax b写成a - b或ba; 1 (3) 除法运算写成分数形式,如1+ a通常写作a (az 0) a 知识点二:单项式 1 由数与字母的积组成的式子叫做单项式, 例如,|r2h、二、abc、 -m都是单项式.其中,单项式中的数字因数叫做这个单项式的系数, 所有字母的指数的和叫做这个单项式的次数。 1 1 例如,| r2h的系数是| ,次数是3 的系数是一,次数是1; abc的系数是1,次数是I;- m的系数是1,次数是1. 要点诠释: 1、特别地,单独一个数或一个字母也是单项式. 2、单项式的系数包括它前面的符号。 3、单项式的系数是1或一1时,通常1省略不写,如一k, pq2 1
3、x1 v 等,单项式的系数是带分数时,通常化成假分数。如 写成- 4、单项式的次数仅仅与字母有关,是单项式中所有字母的指数 的和。特别地,单项式b的次数是1,常数5的次数是0,而9x 103a2b3c 的次数是6,与103无关。 5、要正确区分单项式的次数与单项式中字母的次数,如 6bq的 次数是3,其中字母p的次数是2。 6、圆周率n是常数。 知识点三:多项式 几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项 式的项.其中,不含字母的项,叫做常数项.例如,多项式-”- 有三项,它们是, - 2x, 5 .其中5是常数项. 多项式的项数与次数:一个多项式含有几项,就叫几项式.多项 式里
4、,次数最高项的次数,就是这个多项式的次数.例如,多项式 是一个二次三项式. 要点诠释: 1、多项式的每一项都包括它前面的符号。 如多项式6x2 2x 7, 它的项是6x2, 2x, 7。 2、多项式 3n4 2n2+n+1 的项是 3n4, 2n2, n, 1,其中 3n4 是四次项,2n2是二次项,n是一次项,1是常数项。 3、多项式的次数不是所有的项的次数之和,而是次数最高项的 次数。 4、多项式中含有几项,就是几项式,最高次项的次数是几,就 是几次式。 5、多项式没有系数的概念,但对多项式中的每一项来说都有系 数。知识点四:整式的概念 单项式与多项式统称整式。如 3是单项式,则它必为整式
5、,3x + 5y 1是多项式,则它必为整式。 注意:单项式、多项式、整式三者的区别和联系。单项式是整式, 多项式是整式,但不能说整式是单项式或整式是多项式。 知识点五:整式的值 一般地,用数值代替整式里的字母,按照整式中的运算关系计算 得出的结果,叫做整式的值。 要点诠释: 1、一个整式的值是由整式中字母的取值而决定的.所以整式的 值一般不是一个固定的数,它会随着整式中字母取值的变化而变 化.因此在求整式的值时,必须指明在什么条件下.如:对于整式 n 2;当n = 2时,代数式n 2的值是0;当n = 4时,代数式n 2 的值是2. 2、 整式中字母的取值必须确保做到以下两点: 使整式有意义,
6、 使字母所表示的实际数量有意义, 例如:式子中字母表示长方形的 长,那么它必须大于0. 3、求整式的值的一般步骤: 如果整式能化简,则先化简;如果不能化简,则由整式的值 的概念需要:一要代入,二要计算.求整式的值时,一要弄清楚运算 符号,二要注意运算顺序.在计算时,要注意按整式指明的运算进行. 注:(1)整式中的运算符号和具体数字都不能改变。 (2) 字母在整式中所处的位置必须搞清楚。 (3) 如果字母取值是分数或负数时,作运算时一般加上小 括号,这样不易出错。 知识点六:多项式的降幕与升幕排列 把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫 做把这个多项式按这个字母降幕排列。例如,
7、多项式2x3 + 5x + 8- 5x2,我们可以运用交换律,把多项式按其中字母x的指数从大到小 的顺序写成2x3- 5x2 + 5x + 8的形式,这种书写形式就是把多项式按 字母x降幕排列。 另外,把一个多项式按某一个字母的指数从小到大的顺序排列起 来,叫做把这个多项式按这个字母升幕排列。例如,多项式2x3 + 5x + 8-5x2可以改写成8+ 5x 5x2 + 2x3的形式,这种书写形式就是把 多项式按字母x升幕排列。 要点诠释: 1、利用加法交换律重新排列时,各项应带着它的符号一起移动 位置; 2、含有多个字母时,只按给定的字母进行降幕或升幕排列。 知识点七:同类项 所含字母相同,并
8、且相同字母的指数也分别相等的项叫做同类 项。几个常数项也是同类项。比如: w与只有系数不同,各自 所含的字母都是x、y,并且x的指数都是2, y的指数都是1;同样 地,与:也只有系数不同,各自所含的字母都是 x、y,并且 x的指数都是1, y的指数都是2 .再如3与5也是同类项。 要点诠释: 同类项有两个特征,一是所含字母相同;二是相同字母的指数也 相同。二者缺一不可。而与系数大小、字母的先后顺序没有关系。简 单地说,就是“两相同,两无关”。另外,常数项都是同类项。 知识点八:合并同类项 把多项式中的同类项合并成一项,叫做合并同类项。 要点诠释: 1、合并同类项的法则是:同类项的系数相加,所得
9、的结果作为 合并后所得项的系数,字母和字母的指数不变。 2、合并同类项的一般步骤: (1) 先判断谁与谁是同类项; 注:所有的常数项都是同类项,合并时把它们结合在一起, 运用有理数的运算法则合并。 (2) 利用法则合并同类项; 注:合并同类项时,系数相加,字母部分不变,不能把字母 的指数也相加,如2a+ 5az 7a2。 如果两个同类项的系数互为相反数,合并同类项后,结果为 0。 合并同类项时,只能把同类项合并成一项,不是同类项的不 能合并,不能合并的项,在每步运算中不要漏掉。 (3) 写出合并后的结果。 注:合并同类项时,只要多项式中不再有同类项,就是最后的结 果,结果可能是单项式,也可能是
10、多项式。 知识点九:去括号与添括号 去括号法则: 括号前是“ + ”号,括号里的各项都不变符号; 括号前是“-”号,括号里的各项都改变符号。 要点诠释: 1、括号前面有数字因数时,应利用乘法分配律,先将该数与括 号内的各项分别相乘,再去掉括号,以避免发生符号错误。 2、在去掉括号时,括号内的各项或者都要改变符号,或者都不改 变符号,而不能只改变某些项的符号。 3、一定要注意括号前面的符号,它是去掉括号后,括号内各项 是否变号的依据。如括号前面是“-”号,去括号时常忘记改变括 号内每一项的符号,出现错误,或括号前有数字因数,去括号时没把 数字因数与括号内的每一项相乘,出现漏乘的现象,只有严格按照
11、去 括号法则,才能避免出错。 添括号法则: 所添括号前面是“ + ”号,括到括号里的各项都不变符号; 所添括号前面是“-”号,括到括号里的各项都改变符号. 要点诠释: 1、添括号时,首先要理解题目的要求,弄清楚括号前是“ + ” 号还是“-”号,然后再根据法则添括号,尤其要注意括号前面是“- 号时,括到括号内的各项都要改变符号。 2、把一些项放在带有系数的括号里, 每一项都要除以这个系数, 女口 6a 4b= 2(6a+2-4b- 2) = 2(3a-2b)。 3、 去括号和添括号是两个相反的过程,因此可以相互检验正误。 孳括暑一爭括暑一 女口 a+ b c, 2 a+ (b c), a b+
12、 ca (b c)。 知识点十:整式的加减 一般地,几个整式相加减,如果有括号就先去括号,然后再合并 同类项。 要点诠释: 1、整式的加减运算实质是正确地去括号、合并同类项,以及进 行实际背景的加减运算。 2、几个多项式相加,可以省略括号,直接写成相加的形式,如 3a+2b与2a+ b的和可直接写成:3a+ 2b 2a+ b的形式。 3、两个多项式相减,被减数可不加括号,但减数一定要加上括 号。女口 3a+ 2b与2a+ b的差可写成:3a+ 2b ( 2a+b)的形式, 再去括号进行计算。 4、在进行整式加减运算时,有时可把着眼点放在问题的整体上, 用整体思想考虑问题,可使计算简化。 注:(
13、1)寻找同类项的过程就是把多项式的项按所含字母相 同,并且相同字母的次数也分别相同进行分类。 (2)先化简再求值,就是把一个较复杂的多项式转化为一个较简 单的多项式或单项式,再代入求值,体现了转化思想的优越性。 二、考点: 考点一:单项式、多项式、整式的判断 例:指出下列各式中,哪些是单项式,哪些是多项式,哪些是整式? 2 a-2b x ab-c ,ax +bx+c ,-5 ,-3ny , 一 , 3 5 457 x,y+2 2 ab,- m 考点二:单项式的系数和次数 n2b 例1: -3的系数是,次数是。 7 10 xyz2的系数是,次数是。 例2:若(m-2) xny是四次单项式,求 m
14、 n应满足的条件。 考点三:多项式的次数、项数 4 2 例1:多项式-1 x 2y +x 4y2 - x+1是 次项式,最高次项 5 3 是,一次项的系数是,常数项是。 例2:若多项式(a-4) x3-xb+x-b是关于x的二次三项式,求a-b的 值。 考点四:写单项式或多项式。 例1:写出含有m n的4次单项式,且系数为-1。 例2:写出一个关于x的二次三项式,且常数项为-1。 考点五:同类项的判断。 例1:下列各式中,与x2y是同类项的是() 2 2 2 2 A、xy B 、2xy C 、-yx D 3x y 例2:若3xm+iy2与x3yn的和是单项式,则m = 考点六:去括号与合并同类
15、项。 例:化简: (1) ( -6x2+5xy)-12xy-(2x 2-9xy) (2) 3a-2b+(4a-3b) 考点七:求代数式的值 2332 例:求(x-2x +1)-(-1+2x +2x)的值,其中 x= 2 考点八:整式的加减及其运用。 例 1:已知:A=2xy-x2 B=y 2+3xy ,求:(1)A 与 B 的和; (2)3A-2Br 的值。 例2:小刚在解数学题时,由于粗心,把原题“两个多项式 A和B, 其中B=4X-5X-6,试求A+B中的“ A+B错误地看成“ A-B”,结果 求出答案是-7x2+10 x+12,请你帮他纠错,正确地算出 A+B的值。 例3:出租车收费标准
16、因地而异,A市起步价为5元,行驶3千米后 价格为1.2元/千米,不足1千米以1千米计算。 (1) 已知行驶了 X千米(X3),用含有X的整式表示应收的车费; (2) 某人乘坐出租车行驶6.7千米,应付多少钱? (3) 若某人付车费11元,那么出租车大约行驶了多少千米? 考点九:用整式表示数量。 例1:某三位数,百位上的数字为a,十位上的数字是a的2倍,个位 上的数字比十位上的数字小1,表示这个三位数的整式为 例2:三个连续奇数中,n是最小的一个,则这三个数的和为 考点十:新定义运算在整式加减中的应用 例:规定一种运算:a*b=ab+a-b,其中a、b为有理数,则3*b的值是 多少? 考点一:整体思想的运用: 例 1:将(x+y)看成一个整体,化简:3 (x+y) 2-7 (x+y) +8 (x+y) 2+6 (x+y) 例2:已知x2+x+3的值为7,求2x2+2x+3-3的值。 三、整式的加减易错点: 易错点一:确定单项式的系数和次数时易出现错误。 如:找出下列单项式的系数、次数 abc 2 232 ;xy; -3 xy ; 2 n ;-5 易错点二:确定多项式的次数时容
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 生物样本液氮罐租赁与生物样本安全存储及运输服务合同
- 纺织品质量检验补充合同
- 《晶体管开关特性》课件
- XXX学校校园体育一小时活动安全应急预案范文
- 《神经系统结构概要》课件
- 商品管理与营销策略
- 会展策划师职业培训体系
- 《临床护理操作》课件
- 动土作业安全培训
- 食品安全案例警示与维权指南
- 2025-2030年中国铜冶炼行业前景预测与投资价值研究报告
- 2025年官方兽医答题题库附答案详解(达标题)
- 校长在全体教师大会上讲话:五把钥匙解锁教师从容人生
- 国企物业考试试题及答案
- 2024年湖南省城步苗族自治县事业单位公开招聘医疗卫生岗笔试题带答案
- 以患者为中心的医疗数据管理系统-基于区块链技术
- 2025至2030中国寺庙经济市场深度调研与未来前景发展研究报告
- 2025-2030全球及中国工程机械租赁行业市场现状供需分析及投资评估规划分析研究报告
- 食用菌品牌形象塑造策略-全面剖析
- 电厂脱硫维护合同协议
- 家人转赠房产协议书模板
评论
0/150
提交评论