实数的有关概念和性质以及实数的运算_第1页
实数的有关概念和性质以及实数的运算_第2页
实数的有关概念和性质以及实数的运算_第3页
实数的有关概念和性质以及实数的运算_第4页
实数的有关概念和性质以及实数的运算_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、实数的概念实数可以分为有理数和无理数两类,或代数数和超越数两类,或正实数,负实数和零三类。实数集通常用黑正体字母 R表示。而 表示n维实数空间。实数是不可数的。实数是实数 理论的核心研究对象。实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近 似成一个有限小数(保留小数点后n位,n为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。实数的运算法则1加法法则:(1) 同号两数相加,取相同的符号,并把它们的绝对值相加;(2) 异号两数相加,取绝对值大的加数的

2、符号,并用较大的绝对值减去较小的绝对值。可使用加法交换律:两个数相加,交换加数的位置,和不变即: 加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,和不变即:2、减法法则:减去一个数等于加上这个数的相反数。即a-b=a+(-b)3、乘法法则:(1 )两数相乘,同号取正,异号取负,并把绝对值相乘。(2) n个实数相乘,有一个因数为 0,积就为0;若n个非0的实数相乘,积的符号由负因 数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。(3) 乘法可使用乘法交换律:两个数相乘,交换因数的位置,积不变即:乘法结合律 :三个数相乘,先把前两个数相乘,或者先把后两个数相乘,

3、积不变.即: 分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加即:4、除法法则:(1 )两数相除,同号得正,异号得负,并把绝对值相除。(2) 除以一个数等于乘以这个数的倒数。即(3) 0除以任何数都等于 0, 0不能做被除数。5、 乘方:所表示的意义是 n个a相乘,即正数的任何次幕是正数,负数的偶次幕是正数,负数的奇次幕是负数.乘方与开方互为逆运算。6、实数的运算顺序:乘方、开方为三级运算,乘、除为二级运算,加、减是一级运算,如果没有括号,在同一级运算中要从左到右依次运算,不同级的运算,先算高级的运算再算低级的运算,有括号的先算括号里的运算。无论何种运算,都要注意先定

4、符号后运算。实数计算的常见类型及方法一、实数的运算(1) 加法同号两数相加,取原来的符号,并把绝对值相加;异号两数相加。取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;任何数与零相加等于原数。(2) 减法a-b=a+(-b)(3) 乘法两数相乘,同号得正,异号得负,并把绝对值相乘;零乘以任何数都得零即ab =宅hlWIS同号)-也| |邈13异号)或A为零)ai口 一 (3 工 0)除法bb aa-a%J乘方V 开方 如果x2= a且x 0,那么=x;如果x3=a,那么= x在同一个式于里,先乘方、开方,然后乘、除,最后加、减有括号时,先算括号里面.实数的运算律加法交换律a+b= b

5、+a加法结合律(a+b)+c=a+(b+c)乘法交换律ab = ba.乘法结合律(ab)c=a(bc)分配律a(b+c)=ab+ac其中a、b、c表示任意实数运用运算律有时可使运算简便.一、加法运算中的方法与技巧 例1 计算:415 55- L2 6+ C-4 B ) (-4 6)1I2(2) | (-2) 一 (-3) + (-4) I分析:(1)题的关键是确定运算顺序,有括号的还应先计算括号内的;(2)题的关键是求出绝对值符号中式子的值,进而求出整个式子的值进行有理数的混合 计算时,小学学过的确定运算顺序的方法仍然适用9 / 741(1) 55- 2 6+ (-4 B ) 一 (-5 5

6、- : 2 6-4 E+4 6 4=5 5 -43=5 5-2 2=3 52 丄 I (-2 ) - (-3) + (-4 ) | 21=1 -2 + 3-4 I5_ 2=1- 121=12【小结】巧用加法的交换律与结合律,以达到简化的目的,同时注意交换加数位置时,一定要连同前面的符号一起移动 实数加法运算中通常有以下规律:互为相反数的两个数先相加一“相反数结合法”;符号相同的数先相加一“同号结合法”;分母相同的数先相加一“同分母结合法”;几个数相 加得到整数先相加一“凑整法”;整数与整数,小数与小数相加一“同形结合法”二、乘、除运算中的方法与技巧例2 :计算:1 1(1) 4一(-厅一罗*(

7、一1 几(2 1 一半一 3 X 2aX ( 3- 1 )三(-13).分析:(1)这里没有用括号规定运算顺序, 所以我们应先算乘方,再算除法,最后算除法.(2) 用括号规定运算顺序, 所以应先算括号内的, 再按顺序进行.另外也可以利用乘法对加法的 分配律去掉括号,然后再按顺序进行.解(1) 4一 (2)3 乎吕(一】尸=4一 (8)扌W(T)=4- (-3) _盯十 (-D3= 12+27-29丄j.(2)解法一;一车一只:空区(3-1)丰(-13)_ 24=Ifi 12X (3 )( 3 )3二一lfi+ 9 X( 4)1 6 6 2 21 解法二一护一 3 X 2如(3-1 )斗(-13

8、)13=1 S - 1 2 X ( 3 - 1 ) X(- 4)3=一 18-(4-12) X(-4)=-1 5 + ( 3 9) =-2 2点评:在进行有理数的混合运算时,一要注意运算顺序的正确;二要注意符号的变化;三要注意在运算性质时不要出现错误.三、幕的运算【例3】计算:【小结】(一2尸表示4个-2相乘,负数的偶次方是正数,而 血11表示24的相反数,结果为负数,两者意义不同,注意区别同理,表示3个-2相乘,表示二的相反色戸-2-上 3数5:表示3个亍相乘, 5表示审除以5的商的相反数,两者意义不同,注意观察,当底数是分数时,底数要加括号四、在混合运算中灵活运用运算律【例5】计豆;-l8

9、x(i-4-4-Xl9&18解法皿,討和18 x+( 18) J +96(1弧寺1S“14+15-貝-2MS2: -18x(-辰务辰討辰寻-(14-153)2解法區g魯毒)=-ISx-+18x|.-ISxA【小结】此题利用分配律计算非常简便,但同时是同学们在计算时容易出错的地方第一种方法是把括号中的式子看作和的形式,分别相乘,再相加第二种方法是先定符号,后面注意整体思想第三种方法,第一部分相乘时先定符号,后定值【例引计更:? .212222解!( + 3-L)x(3-7)x-LxlL1732222斗$务性罕)722221321 22 21 22227223【小结】 善于观察,寻求解决问题的策略

10、,是至关重要的灵活使用交换律和分配律,使解决本题的步骤变得简捷明快 【例小惟肌丹护吉坦备L解;舷试召必告)哙+P挣*-Xx(-12)4-XX-12)+O(-協心1S-14+13=-1?【小结】 有理数的加减乘除混合运算中,如果有括号通常先算括号里面的,如果无括 号,则按照“先乘除,后加减”的顺序进行此题,在将混合运算中的除法转化为乘法后,运用乘法运算律简化计算同时注意多项式除以单项式可用分配律单项式除以多项式不可用分配律,必须把除数作为一个整体来进行计算五、二次根式的运算王匕bQ,做题时应注意这一点。解答:他的化简过程是错误的,这是因为:根据性质:,应有条件 y 沁, 序空I O而该同学在.的

11、化简过程中,显然出现了违背条件的情况,Y 与* 是没有意义的,因此他的化简过程是错误的。正确的应是:搓弋4点评:运算性质是运算的基础,要准确全面的把握运算性质,不能断章取义,在复习 是要注这一点,对某一知识的掌握要全面、深刻而不能仅仅局限于了解、知道或模棱两可, 这是总复习中的大忌。拓广:乙的解答是:对于题目“化简并求值:甲的解答是:甲、乙人的解答不同.谁的解答是错误的?为什么?解:乙的解答是错误的,因为:,则,故有:六、开放性问题【例9】 现有四个有理数 3, 4,-6 ,10运用有理数的四则混合运算写出三种不同方法 的运算式,使其结果等于24,运算如下:(1) (2)(3)解:(1) 10

12、- (-6 )X 3+ 4(2) (10+ 4-6)X 3(3) 4 - 10X( -6 )- 3【小结】 此题具有开放性、探究性,要发散思维,结合有理数的混合运算性质,多角 度寻求解题途径对于任意非零实数x, y定义的新运算“ ?”: x?y=ax-by,等号右边是乘法和减法的运算,已知:2?3=2, 3?5=2,则3?4=.答案:4解析:根据题意列出方程组,求出方程组的解得到 a与b的值,再将所求式子利用新定义变形后计算即可求出值.解:根据题意得:,X 3-X 2 得:b=2,将b=2代入得:2a-6=2,即a=4,则 3?4=12-8=4 .故答案为:4在实数的原有运算法则(“ ?”和“-”仍为通常的乘法和减法)中,我们补充定义新运算 “如下:当时,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论