




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高考考前复习资料三角部分易错题选 一、选择题:1(如中)为了得到函数的图象,可以将函数的图象( ) a 向右平移 b 向右平移 c 向左平移 d向左平移错误分析:审题不仔细,把目标函数搞错是此题最容易犯的错误.答案: b2(如中)函数的最小正周期为 ( )a b c d错误分析:将函数解析式化为后得到周期,而忽视了定义域的限制,导致出错.答案: b3(石庄中学)曲线y=2sin(x+cos(x-)和直线y=在y轴右侧的交点按横坐标从小到大依次记为p1、p2、p3,则|p2p4|等于( ) apb2pc3pd4p正确答案:a 错因:学生对该解析式不能变形,化简为asin(x+)的形式,从而借助函
2、数图象和函数的周期性求出|p2p|。4(石庄中学)下列四个函数y=tan2x,y=cos2x,y=sin4x,y=cot(x+),其中以点(,0)为中心对称的三角函数有( )个a1b2c3d4正确答案:d 错因:学生对三角函数图象的对称性和平移变换未能熟练掌握。5(石庄中学)函数y=asin(wx+j)(w0,a0)的图象与函数y=acos(wx+j)(w0, a0)的图象在区间(x0,x0+)上()a至少有两个交点b至多有两个交点c至多有一个交点d至少有一个交点正确答案:c错因:学生不能采用取特殊值和数形结合的思想方法来解题。6(石庄中学)在dabc中,2sina+cosb=2,sinb+2
3、cosa=,则c的大小应为( )abc或d或正确答案:a 错因:学生求c有两解后不代入检验。7已知tana tanb是方程x2+3x+4=0的两根,若a,b(-),则a+b=( )ab或-c-或d-正确答案:d 错因:学生不能准确限制角的范围。8(搬中) 若,则对任意实数的取值为( ) a. 1b. 区间(0,1) c. d. 不能确定 解一:设点,则此点满足 解得或 即 选a 解二:用赋值法, 令 同样有 选a 说明:此题极易认为答案a最不可能,怎么能会与无关呢?其实这是我们忽略了一个隐含条件,导致了错选为c或d。 9(搬中) 在中,则的大小为( ) a. b. c. d. 解:由平方相加得
4、 若 则 又 选a 说明:此题极易错选为,条件比较隐蔽,不易发现。这里提示我们要注意对题目条件的挖掘。10(城西中学)中,、c对应边分别为、.若,且此三角形有两解,则的取值范围为 ( ) a. b. c. d. 正确答案:a错因:不知利用数形结合寻找突破口。11(城西中学)已知函数 y=sin(x+)与直线y的交点中距离最近的两点距离为,那么此函数的周期是( )a b c 2 d 4正确答案:b错因:不会利用范围快速解题。12(城西中学)函数为增函数的区间是 ( )a. b. c. d. 正确答案:c错因:不注意内函数的单调性。13(城西中学)已知且,这下列各式中成立的是( ) a. b. c
5、. d.正确答案(d)错因:难以抓住三角函数的单调性。14(城西中学)函数的图象的一条对称轴的方程是()正确答案a错因:没能观察表达式的整体构造,盲目化简导致表达式变繁而无法继续化简。15(城西中学)是正实数,函数在上是增函数,那么( )abcd正确答案a错因:大部分学生无法从正面解决,即使解对也是利用的特殊值法。16(一中)在(0,2)内,使cosxsinxtanx的成立的x的取值范围是 ( )a、 () b、 () c、() d、()正确答案:c17(一中)设,若在上关于x的方程有两个不等的实根,则为a、或 b、 c、 d、不确定正确答案:a18(蒲中)abc中,已知cosa=,sinb=
6、,则cosc的值为( ) a、 b、 c、或 d、 答案:a 点评:易误选c。忽略对题中隐含条件的挖掘。19(蒲中)在abc中,3sina+4cosb=6,4sinb+3cosa=1,则c的大小为( ) a、 b、 c、或 d、或 答案:a 点评:易误选c,忽略a+b的范围。20(蒲中)设cos1000=k,则tan800是( ) a、 b、 c、 d、 答案:b 点评:误选c,忽略三角函数符号的选择。21(江安中学)已知角的终边上一点的坐标为(),则角的最小值为( )。a、 b、 c、 d、正解:d,而所以,角的终边在第四象限,所以选d,误解:,选b22(江安中学)将函数的图像向右移个单位后
7、,再作关于轴的对称变换得到的函数的图像,则可以是( )。a、 b、 c、 d、正解:b,作关于x轴的对称变换得,然后向左平移个单位得函数 可得误解:未想到逆推,或在某一步骤时未逆推,最终导致错解。23(江安中学)a,b,c是abc的三个内角,且是方程的两个实数根,则abc是( )a、钝角三角形 b、锐角三角形 c、等腰三角形 d、等边三角形正解:a由韦达定理得: 在中,是钝角,是钝角三角形。24(江安中学)曲线为参数)上的点到两坐标轴的距离之和的最大值是( )。a、 b、 c、1 d、正解:d。由于所表示的曲线是圆,又由其对称性,可考虑的情况,即则误解:计算错误所致。25(丁中)在锐角abc中
8、,若,则的取值范围为( )a、 b、 c、 d、错解: b.错因:只注意到而未注意也必须为正.正解: a.26(丁中)已知,(),则 (c)a、 b、 c、 d、错解:a错因:忽略,而不解出正解:c27(丁中)先将函数y=sin2x的图象向右平移个单位长度,再将所得图象作关于y轴的对称变换,则所得函数图象对应的解析式为 ( )ay=sin(2x+ ) b y=sin(2x)cy=sin(2x+ ) d y=sin(2x)错解:b错因:将函数y=sin2x的图象向右平移个单位长度时,写成了正解:d28(丁中)如果,那么的取值范围是( )a, b, c, d,错解: d错因:只注意到定义域,而忽视
9、解集中包含.正解: b29(薛中)函数的单调减区间是( ) a、 () b、 c、 d、 答案:d 错解:b 错因:没有考虑根号里的表达式非负。30(薛中)已知的取值范围是( ) a、 b、 c、 d、 答案:a设,可得sin2x sin2y=2t,由。 错解:b、c 错因:将由选b,相减时选c,没有考虑上述两种情况均须满足。31(薛中)在锐角abc中,若c=2b,则的范围是( ) a、(0,2) b、 c、 d、 答案:c 错解:b 错因:没有精确角b的范围40(案中)函数 ( )a、3 b、5 c、7 d、9正确答案:b错误原因:在画图时,0时,意识性较差。41(案中)在abc中,则c的大
10、小为 ()a、30 b、150 c、30或150 d、60或150正确答案:a错误原因:易选c,无讨论意识,事实上如果c=150则a=30,6和题设矛盾42(案中) ( )a、 b、 c、 d、正确答案:c错误原因:利用周期函数的定义求周期,这往往是容易忽视的,本题直接检验得43(案中) ( )a、 b、 c、 d、正确答案:b错误原因:忽视三角函数定义域对周期的影响。44(案中)已知奇函数等调减函数,又,为锐角三角形内角,则( )a、f(cos) f(cos) b、f(sin) f(sin)c、f(sin)f(cos) d、f(sin) f(cos)正确答案:(c)错误原因:综合运用函数的有
11、关性质的能力不强。45(案中)设那么的取值范围为( )a、 b、 c、 d、正确答案:(b)错误原因:对三角函数的周期和单调性之间的关系搞不清楚。二填空题:1(如中)已知方程(a为大于1的常数)的两根为,且、,则的值是_.错误分析:忽略了隐含限制是方程的两个负根,从而导致错误.正确解法: , 是方程的两个负根 又 即 由=可得答案: -2 .2(如中)已知,则的取值范围是_.错误分析:由得代入中,化为关于的二次函数在上的范围,而忽视了的隐含限制,导致错误.答案: .略解: 由得 将(1)代入得=.3(如中)若,且,则_.错误分析:直接由,及求的值代入求得两解,忽略隐含限制出错.答案: .4(搬
12、中)函数的最大值为3,最小值为2,则_,_。 解:若 则 若 则 说明:此题容易误认为,而漏掉一种情况。这里提醒我们考虑问题要周全。5(磨中)若sin cos,则角的终边在第_象限。 正确答案:四 错误原因:注意角的范围,从而限制的范围。6(城西中学)在abc中,已知a、b、c成等差数列,则的值为_.正确答案:错因:看不出是两角和的正切公式的变形。7(一中)函数的值域是 正确答案:8(一中)若函数的最大值是1,最小值是,则函数的最大值是正确答案:59(一中)定义运算为:例如,,则函数f(x)=的值域为正确答案:10(蒲中)若,是第二象限角,则=_ 答案:5 点评:易忽略的范围,由得=5或。11
13、(蒲中)设0,函数f(x)=2sinx在上为增函数,那么的取值范围是_ 答案:00, w0,-j),其图象如图所示。(1)求函数y=f(x)在-p,的表达式;(2)求方程f(x)=的解。解:(1)由图象知a=1,t=4()=2p,w= 在x-,时将(,1)代入f(x)得f()=sin(+j)=1-j6),则n=( )a 15 b 16 c 17 d 18正确答案:d 错因:学生不能运用数列的性质计算a+a=2(石庄中学)已知s是等差数列a的前n项和,若a+a+a是一个确定的常数,则数列s中是常数的项是( )a s b s c s d s正确答案: d 错因:学生对等差数列通项公式的逆向使用和等
14、差数列的性质不能灵活应用。3(石庄中学)设a是等差数列,b为等比数列,其公比q1, 且b0(i=1、2、3 n) 若a=b,a=b则 ( )a a=b b ab c ab d ab或 ab正确答案 b 错因:学生不能灵活运用等差中项和等比中项的定义及基本不等式。4(石庄中学)已知非常数数列a,满足 a-aa+a=0且aa, i=1、2、3、n,对于给定的正整数n,a=a,则等于( )a 2 b -1 c 1 d 0正确答案:d 错因:学生看不懂题目,不能挖掘题目的隐含条件,a的项具有周期性。5(石庄中学)某人为了观看2008年奥运会,从2001年起每年5月10日到银行存入a元定期储蓄,若年利率
15、为p且保持不变,并且每年到期的存款及利息均自动转为新一年定期,到2008年将所有的存款和利息全部取回,则可取回的钱的总数(元)为( )a a(1+p) b a(1+p) c d 正确答案:d 错因: 学生对存款利息的计算方法没掌握。 6(搬中)一个只有有限项的等差数列,它的前5项的和为34,最后5项的和为146,所有项的和为234,则它的第七项等于( ) a. 22b. 21c. 19d. 18 解:设该数列有项 且首项为,末项为,公差为 则依题意有 可得 代入(3)有 从而有 又所求项恰为该数列的中间项, 故选d 说明:虽然依题意只能列出3个方程,而方程所涉及的未知数有4个,但将作为一个整体
16、,问题即可迎刃而解。在求时,巧用等差中项的性质也值得关注。知识的灵活应用,来源于对知识系统的深刻理解。7(搬中)是成等比数列的( ) a. 充分不必要条件 b. 必要不充分条件 c. 充要条件 d. 既不充分也不必要条件 解:不一定等比 如 若成等比数列 则 选d 说明:此题易错选为a或b或c,原因是等比数列中要求每一项及公比都不为零。8(磨中)已知sk表示an的前k项和,snsn+1=an(nn+),则an一定是_。 a、等差数列 b、等比数列 c、常数列 d、以上都不正确正确答案:d错误原因:忽略an=0这一特殊性9(磨中)已知数列1,a1,a2,4成等差数列,1,b1,b2,b3,4成等
17、比数列,则的值为_。 a、 b、 c、或 d、正确答案:a 错误原因:忽略b2为等比数列的第三项,b2符号与1、4同号10(磨中)等比数列an的公比为q,则q1是“对于任意nn+”都有an+1an的_条件。a、必要不充分条件 b、充分不必要条件c、充要条件 d、既不充分也不必要条件正确答案:d错误原因:忽略a1与q共同限制单调性这一特性11(城西中学)数列的前n项和为s=n2+2n-1,则a1+a3+a5+a25=( )a 350 b 351 c 337 d 338正确答案:a错因:不理解该数列从第二项起向后成等差数列。12(城西中学)在等差数列,则在sn中最大的负数为( )as17bs18c
18、s19ds20答案:c错因:等差数列求和公式应用以及数列性质分析错误。13(城西中学)已知三个互不相等实数成等差数列,那么关于的方程a,一定有两个不相等的实数根 b,一定有两个相等的实数根c, 一定没有实数根 d,一定有实数根正确答案:d错因:不注意的情况。14(城西中学)从集合1,2,3,10中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列个数为( )a3b4c6d8 正确答案:d错因:误认为公比一定为整数。15(城西中学)若干个能唯一确定一个数列的量称为该数列的“基本量”,设是公比为q的无穷等比数列,下列四组量中,一定能成为数列“基本量”的是( )(1),(2)(3),(4)a
19、.(1)(3) b .(1) (4) c.(2) (3) d.(2)(4)正确答案(b)错因:题意理解不清16(城西中学)已知等差数列an,的前n项和为sn,且s2=10,s5=55,则过点p(n,),q(n+2,)(nn+*)的直线的斜率为a、4 b、3 c、2 d、1正确答案: d错因:不注意对和式进行化简。17(城西中学)在之间插入n个正数,使这n+2个正数成等比数列,则插入的n个正数之积为._.正确答案:错因:无法探求问题实质,致使找不到解题的切入点。18(城西中学)数列满足 ,若,则的值为( )a. b. c. d.正确答案:c错因:缺研究性学习能力19(一中)已知数列的前n项和为,
20、现从前m项:,中抽出一项(不是,也不是),余下各项的算术平均数为37,则抽出的是a第6项 b第8项 c第12项 d第15项正确答案:b20(一中)某种细菌在细菌的作用下完成培养过程,假设一个细菌与一个细菌可繁殖为2个细菌与0个细菌,今有1个细菌和512个细菌,则细菌最多可繁殖的个数为a511 b.512 c.513 d.514 正确答案:c21(一中)等比数列中,公比,用表示它前n项的积:,则中最大的是( )a b c d 正确答案:c22(一中)已知,对于,定义,假设,那么解析式是( )a b c d 正确答案:b23(一中)如图,是由花盆摆成的图案, 根据图中花盆摆放的规律,猜想第个图形中
21、花盆的盆数= . 正确答案:24(一中)是实数构成的等比数列,sn是其前n项和,则数列中 ( )a、任一项均不为0 b、必有一项为0c、至多有有限项为0 d、或无一项为0,或无穷多项为0正确答案:d25(蒲中)是a,x,b成等比数列的( ) a、充分非必要条件 b、必要非充分条件 c、充要条件 d、既不充分又不必要条件 答案:d 点评:易错选a或b。26(蒲中)数列1,1+2,1+2+4,1+2+4+2n各项和为( ) a、2n+12n b、2nn1 c、2n+2n3 d、2n+2n2 答案:c 点评:误把1+2+4+2n当成通项,而忽略特值法排除,错选a。27(蒲中)已知数列an的通项公式为
22、an=6n4,数列bn的通项公式为bn=2n,则在数列an的前100项中与数列bn中各项中相同的项有( ) a、50项 b、34项 c、6项 d、5项 点评:列出两个数列中的项,找规律。28(江安中学)已知数列中,若2),则下列各不等式中一定成立的是( )。a. b.c. d.正解:a由于2),为等差数列。而 0 误解:判断不出等差数列,判断后,是否选用作差法。29(江安中学)某工厂第一年年产量为a,第二年的增长率为a,第三年的增长率为b,这两年的平均增长率为x,则( )。e.f. g. h. 正解:b设平均增长率为, 误解:30(江安中学)计算机是将信息转换成二进制进行处理的,二进制即“逢二
23、进一”,如(1101)2表示二进制数,将它转换成十进制形式,是,那么二进制数转换成十进制形式是( )i. 217-2j. 216-2k. 216-1l. 215-1正解:c=误解:没有弄清题意;=31(江安中学)在数列中,则等于( )。m.n. 10o. 13p. 19正解:c。由2得,是等差数列误解:a、b、d被式子的表面所迷惑,未发现是等差数列这个本质特征,而只由表面的递推关系得到,从而计算繁琐,导致有误。32(江安中学)已知等比数列的首项为,公比为q,且有,则首项的取值范围是( )。q.r.s.t.正解:d。 时,;且时 且,。选。误解:没有考虑,忽略了;对,只讨论了或,或,而得到了错误
24、解答。33(江安中学)在abc中,为的对边,且,则( )。u. 成等差数列v. 成等差数列w. 成等比数列x. 成等比数列正解:d。 即,注意:切入点是将恒等变形,若找不准,将事倍功半。34(丁中)x=是a、x、b成等比数列的( a.充分非必要条件 b.必要非充分条件 c.充要条件 d.既非充分又非必要条件错解:c或a错因:误认为x=与。忽视为零的情况。正解:d35(丁中)若成等比数列,则下列三个数: ,必成等比数列的个数为( )a、3 b、2 c、1 d、0错解: a.错因:没有考虑公比和的情形,将也错认为是正确的.正解: c.36(丁中)已知是递增数列,且对任意都有恒成立,则实数的取值范围
25、 (d)a、( b、( c、( d、(错解:c错因:从二次函数的角度思考,用正解:d。37(丁中)等比数列中,若,则的值(a)是3或3 (b) 是3 (c) 是3 (d)不存在错解:a错因:直接,成等比数列,忽视这三项要同号。正解:c38(薛中)数列的前n项和 . a、350 b、351 c、337 d、338 答案:a 错解:b 错因:首项不满足通项。39(薛中)在等差数列中,若它的前n项和sn有最大值,那么中的最小正数是( ) a、s17 b、s18 c、s19 d、s20 答案:c 错解:d 错因:化简时没有考虑a10的正负。40(薛中)若a,b,a+b成等差数列,a,b,ab成等比数列
26、,且,则m 的取值范围是( ) a、 b、 c、 d、 答案:c 错解:b 错因:对数函数的性质不熟。41(薛中)已知数列的通项公式为,则关于an的最大,最小项,叙述正确的是( ) a、最大项为a1,最小项为a3 b、最大项为a1,最小项不存在 c、最大项不存在,最小项为a3 d、最大项为a1,最小项为a4 答案:a 错解:c 错因:没有考虑到时,42(案中)等比数列的等比中项为( )a、16 b、16 c、32 d、32正确答案:(b)错误原因:审题不清易选(a),误认为是,实质为。43(案中)已知的前n项之和的值为 ( )、67、65 、61 、55正确答案:a错误原因:认为为等差数列,实
27、质为二填空题:1(如中)在等比数列中,若则的值为_错解或错解分析 没有意识到所给条件隐含公比为正 正解2(如中)实数项等比数列的前项的和为,若,则公比等于_-错解错解分析用前项的和公式求解本题,计算量大,出错,应活用性质正解3(如中)从集合中任取三个不同的数,使这三个数成等差数列,这样的等差数列最多有_错解90个错解分析没有考虑公差为负的情况,思考欠全面正解180个4(如中)设数列满足,则为等差数列是为等比数列的_条件错解充分错解分析 对数运算不清,判别方法没寻求到或半途而废正解充要5(如中)若数列是等差数列,其前项的和为,则也是等差数列,类比以上性质,等比数列,则=_,也是等比数列错解错解分
28、析 没有对仔细分析,其为算术平均数,正解6(如中)已知数列中,则等于_错解或 或错解分析 盲目下结论,没能归纳出该数列项的特点 正解7(如中)已知数列中,(是与无关的实数常数),且满足,则实数的取值范围是_错解错解分析审题不清,若能结合函数分析会较好正解8(如中)一种产品的年产量第一年为件,第二年比第一年增长,第三年比第二年增长,且,若年平均增长,则有_(填)错解错解分析实际问题的处理较生疏,基本不等式的使用不娴熟正解9(城西中学)给定,定义使为整数的叫做“企盼数”,则在区间(1,62)内的所有企盼数的和是_.正确答案:52错因:大部分学生难以读懂题意,也就难以建立解题数学模型。10(蒲中)数
29、列an的前n项和sn=n2+1,则an=_ 答案:an= 点评:误填2n1,忽略“an=snsn1”成立的条件:“n2”。11(蒲中)已知an为递增数列,且对于任意正整数n,an=n2+n恒成立,则的取值范围是_ 答案:3点评:利用二次函数单调性讨论较繁,且易错,利用an+1an恒成立较方便。12(江安中学)关于数列有下列四个判断:1) 若成等比数列,则也成等比数列;2) 若数列既是等差数列也是等比数列,则为常数列;3) 数列的前n项和为,且,则为等差或等比数列;4) 数列为等差数列,且公差不为零,则数列中不会有,其中正确判断的序号是_(注:把你认为正确判断的序号都填上)正解:(2)(4).误
30、解:(1)(3)。对于(1)a、b、c、d成等比数列。 也成等比数列,这时误解。因为特列:时,成等比数列,但,即不成等比。对于(3)可证当时,为等差数列,时为等比数列。时既不是等差也不是等比数列,故(3)是错的。13(江安中学)关于的方程的所有实根之和为_。正解:168方程有实根,0解得:n所有实根之和为误解:没能根据条件具体确定n的取值,只得出一个关于n的多项式结果。14(江安中学)有四个命题:1) 一个等差数列中,若存在,则对于任意自然数,都有;2) 一个等比数列中,若存在,则对于任意,都有;3) 一个等差数列中,若存在,则对于任意,都有;4) 一个等比数列中,若存在自然数,使,则对于任意
31、,都有,其中正确命题的序号是_。正解:由等差数列和等比数列的性质得。误解:“对于等比数列,若,各项同号(同正或同负),若,各项正,负相间”,学生对此性质把握不清,故认为错。15(丁中)已知数列an的前n项和sn=an1(a),则数列an_a.一定是等差数列 b.一定是等比数列c.或者是等差数列或者是等比数列 d.既非等差数列又非等比数列错解:b错因:通项中忽视的情况。正解:c16(丁中)设等差数列中,且从第5项开始是正数,则公差的范围是 错解:错因:忽视,即第4项可为0。正解:17(丁中)方程的四个实数根组成一个首项为的等比数列,则 正解: .错因:设方程的解为;方程的解为,则,不能依据等比数
32、列的性质准确搞清的排列顺序.18(丁中)等差数列an中, a1=25, s17=,则该数列的前_项之和最大,其最大值为_。错解:12错因:忽视正解:12或13 , 19(薛中)若,则数列的前n项和sn= 。 答案: 错解: 错因:裂项求和时系数2丢掉。20(薛中)已知数列是非零等差数列,又a1,a3,a9组成一个等比数列的前三项,则的值是 。 答案:1或 错解: 错因:忘考虑公差为零的情况。21(薛中)对任意正整数n, 满足数列是递增数列,则的取值范围是 。 答案: 错解: 错因:利用二次函数的对称轴,忽视其与的关系。22(案中)数列的前n项之和为,若将此数列按如下规律编组:()、(,)、(,
33、)、,则第n组的n个数之和为 。正确答案:错误原因:未能明确第n组各项的构成规律,尤其是首项和最后一项,从而找不到合适的解法,应转化为:23(案中)若an=1+2+3+n,则数列的前n项之和= 。正确答案:错误原因:未能将an先求和得不强。24(案中)若数列为等差数列且,则数列,类比上述性质,相应地若数列0, ,则有正确答案:错误原因:类比意识不强三、解答题:1(如中)设数列的前项和为,求这个数列的通项公公式错解 错解分析此题错在没有分析的情况,以偏概全误认为任何情况下都有正解 因此数列的通项公式是2(如中)已知一个等比数列前四项之积为,第二、三项的和为,求这个等比数列的公比错解四个数成等比数
34、列,可设其分别为则有,解得或,故原数列的公比为或错解分析按上述设法,等比数列公比,各项一定同号,而原题中无此条件正解设四个数分别为则,由时,可得当时,可得3(石庄中学) 已知正项数an满足a1= a (0a1) ,且,求证:(i) ; (ii) . 解析:(i) 将条件变形,得.于是,有,.将这n-1个不等式叠加,得,故. (ii) 注意到0a1,于是由(i)得=,从而,有.4(搬中) 已知数列的前项和满足,求数列的通项公式。 解: 当时, 当时, 的通项公式为 说明:此题易忽略的情况。应满足条件。5(搬中)等比数列的前项和为,求公比。 解:若 则 矛盾 说明:此题易忽略的情况,在等比数列求和时要分公比两种情况进行讨论。6(搬中)求和。 解:若 则 若 则 若 且 令 则 两式相减得 说明:此题易忽略前两种情况。数列求和时,若含有字母,一定要考虑相应的特殊情况。7(磨中)已知数列an的前n项和sn=n216n6,求数列|an|的前n项和sn 正确答案:sn= n2+16n+6 n8时 n216n+134 n8时 错误原因:运用或推导公式时,只考虑一般情况,忽视特殊情况,导致错解。8(磨中) 已知函数f(x)= sin2xasinx+b+1的最大值为0,最小值4 ,若实数a0,求a、b的值。 正确答案:a=2 b
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 数学 2024-2025学年人教版七年级数学下册期末考试卷
- 2019-2025年中级经济师之中级工商管理高分通关题型题库附解析答案
- 2025年上海市中考语文真题试卷含答案(回忆版)
- 环境经济法律法规咨询重点基础知识点归纳
- 环境教育课程设计重点基础知识点归纳
- 土木工程BIM技术标准与实施案例
- 房地产项目预算编制实务
- 护理实践中的个人保护与职业发展
- 快乐的春节插画故事时光
- 基于BIM的高桩基桩施工案例研究
- 砂石料加工厂劳务外包服务采购项目
- 小学教育中数学与语文教学的融合实施
- 列车网络控制技术-复习打印版
- Axsym(雅培化学发光仪)简易维修手册第10单元 故障操作
- 临床常见检验指标
- NGW型行星齿轮传动系统的优化设计
- 面试成绩通知单(上下联式)
- 三年级上册数学教案-第七单元 分数的初步认识 苏教版
- 2009吉林省职称评审表(共4页)
- 流动式式起重机司机实操考核评分表
- 最新小学生成长记录(课堂PPT)
评论
0/150
提交评论