



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、5.2.1 解二元一次方程组 教学目标】 知识与技能 会用代入消元法解二元一次方程组 过程与方法 了解解二元一次方程组的消元思想 , 初步体现数学研究中“化未知为 已知”的化归思想 , 从而“变陌生为熟悉” 情感态度与价值观 利用小组合作探讨学习 , 使学生领会朴素的辩证唯物主义思想 . 行为与创新 经历具体实例的抽象概括过程,进一步发展学生的抽象思维能力 【教学重难点】 重点 用代入法解二元一次方程组 , 基本方法是消元化二元为一元 . 难点 用代入法解二元一次方程组的基本思想是化归化陌生为熟 悉. 【课前准备】 教师:课件 学生:练习本 . 【教学过程】 引入 上节课我们的老牛和小马的包裹
2、谁的多的问题 ,经过大家的 共同努力,得出了二元一次方程组xy = 2 到底谁的包 、x+1 = 2(y1) 裹多呢? 这就需要解这个二元一次方程组. 二、一元一次方程我们会解,二元一次方程组如何解呢? 我们大家知道二元一次方程只需要消去一个未知数就可变为一元 一次方程,那么我们发现: 由得y=x2 由于方程组相同的字母表示同一个未知数,所以方程中的y也 等于x 2,可以用x 2代替方程中的y.这样就得到大家会解的 一元一次方程了. 三、做一做 我们知道了解二元一次方程组的一种思路,下面我们来做一做 3x+2y=8 解方程组y+3- 2 解:将代入,得3(y+3)+2y = 14 3y+9+2
3、y=14 5y =5 y=1 将y=1代入,得x=4 1 x 二 4 所以原方程组的解是X 4 ly =1 例2、解方程组2X 316 x+4y=13 教师先分析:此题不同于例1,(即用含有一个未知数的代数式表 示另一个未知数),式不能直接代入,那么我们应当怎样处理 才能转化为例1式这样的形式呢?请同学回答(应先对式进行 恒等变化,把它化为例1中式那样的形式.) 分小组合作完成上述例题,请两个小组的代表上黑板上来板演 解:由,得 x=13 4y 将代入,得2(13 4)S+3y=16 26 8y+3y=16 5y= 10 y=2 将代入,得x=5 所以原方程组的解是 x=5 y=2 四、议一议
4、、 上面解方程组的基本思路是什么?主要步骤有哪些? 上面解方程组的基本思路是“消元”一一把“二元”变为“一 元”。主要步骤是:将其中一个方程中的某个未知数用含有另 一个未知数的代数式表示出来,将这个代数式代入另一个方程 中,从而消去一个未知数,化二元一次方程组为一元一次方程式。 解这个一元一次方程。把求得的一次方程的解代入方程中, 求得另一个未知数值,组成方程组的解。这种解方程组的方法称 为代入消元法。简称代入法 五、练一练、 1、已知x+3y 6=0,用含x的代数式表示y为 用含y的代数式表示x为 2、书本Ro9随堂练习 六、小结、 1、今天我们学习了二元一次方程组的解法,你有什么体会? 2
5、、解二元一次方程组的思路是消元,把二元变为一元 3、解题步骤概括为三步即:变、代、解、 4、方程组的解的表示方法,应用大括号把一对未知数的值连在一 起,表示同时成立,不要写成x= ? y=? 5、由一个方程变形得到的一个含有一个未知数的代数式必须代入 另一个方程中去,否则会出现一个恒等式。 七、作业、 1、 已知x=1是方程组ax b 若方程组!4x + 3y 的解x与y相等,则a的值是多少? (ax + (a_1)y=3 课时作业设计 1.用代入法解方程组 2x=3y,以下各代入中代入正确的的是 、3x =3y+1 的解,则a、b的值是多少? y=1lx-by = 3 2 A.3x=3(x) 1 3 D.3x=3x(6x+1) 2 B.3x=3(- y) 1 C.3x (?x) 1 2 2方程组x y =1,的解是 、2x_y=5 f x - -1, ix - -2,x = 2, x = 2. A.B . 彳C .彳 D . y =2. y =3.y |_y = 1. 3. 将方程5x 7y=14变形为用含x的代数式表示y , y二用 含y 的代数式表示x, x = . 4. 若x= 2, y=3为二元一次方程ax b -6的解,则当b=4时,a 5. 已知 5 x + y 3 +3(x2y f =0,贝卩 x =; y 二 .
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 办公室远程管理制度
- 卫生站工作管理制度
- 咖啡馆设备管理制度
- 传统村落改造实施方案
- 工厂10项管理制度
- 护士14项管理制度
- 服装厂6s管理制度
- 柴油桶储存管理制度
- 核安化建设管理制度
- 棉制品采购管理制度
- 国家电力投资集团有限公司介绍
- 定额〔2025〕3号文-关于发布2023版西藏地区电网工程概预算定额价格水平调整的通知
- 医院结核感染培训
- 2025年广东省广州市花都区交通局建管中心招聘14人历年高频重点提升(共500题)附带答案详解
- 临床心内科主任竞聘稿
- 电动工器具安全使用培训
- 垃圾焚烧炉安装及方案
- 防水工程专项施工方案
- 幼儿教师讲故事技巧培训
- 日本建设项目可视化、安全文明、工艺管理总结
- 【MOOC】思想道德与法治-南开大学 中国大学慕课MOOC答案
评论
0/150
提交评论