



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、插值算法思想来源精品文档拉格朗日插值法拉格朗日插值法由来在数值分析中 ,拉格朗日插值法是一种多项式差值方法 ,它的命名来源于法国 十八世纪大数学家约瑟夫路易斯拉格朗日。在很多实际问题中都倾向于函数来 表示某种内在联系或规律。但是有相当的一部分函数都是通过实验和观测来了 解。如对实践中的某个物理量进行观测,在若干个不同的地方得到相应的观测 值,拉格朗日插值法可以找到一个这样的一个多项式,这个多项式恰好在各个 观测的点取得观测到的值。这样的多项式称为朗格朗日插值多项式。从代数的 角度来说,拉格朗日插值法可以给出一个恰好穿过二维平面上若干个已知点的 多项式函数。拉格朗日插值法最早被英国数学家爱德华华
2、林于 1779 年发现, 不久后( 1783年)由莱昂哈德欧拉再次发现。 1795年,拉格朗日在他的著作 师范学校数学基础教程中发表了这个插值方法,从此他的名字就和这个方 法产生了不解之缘。牛顿插值法利用插值基函数很容易得到拉格朗日插值多项式,公式结构紧凑,在理论分 析中甚为方便,但当插值节点增减时全部插值基函数均要随之变化,整个公式 也将发生变化 , 这在实际计算中是很不方便的,为了克服这一缺点,提出了牛顿 插值。Hermite 插值法其它插值法只要求插值多项式在各结点处满足插值条件,因而无法保证插 值多项式及分段插值多项式在结点处导数的连续性,所以,插值函数曲线的光 滑度可能很差,这种插值
3、多项式往往还不能全面反映被插值函数的性态,为了收集于网络,如有侵权请联系管理员删除精品文档得到具有一定光滑程度的函数,许多实际问题不但要求插值函数与被插值函数在各结点处的函数值相同,而且还要求插值函数在某些结点或全部结点上与被插值函数的导数值也相等,甚至要求高阶导数值也相等,这样的插值函数一定能更好地逼近被插值函数,我们称满足这种要求的插值问题为埃尔米特插值问 题。分段插值随着插值节点数增加 ,插值多项式的次数也相应增加 , 而对于高次插值容易 带来剧烈振荡 , 带来数值不稳定。为了既要增加插值节点,减小插值区间,以便 更好的逼近被插值函数,又要不增加插值多项式的次数以减少误差,可以采用 分段插值。三次样条插值高次插值函数的计算量大 , 有剧烈振荡 , 且数值稳定性差;在分段插值中, 分段线性插值在分段点上仅连续而不可导,分段三次埃尔米特插值有连续的一 阶导数,如此光滑程度常不能满足物理问题的需要,样条函数可以同时解决这 两个问题 ,使插值函数既是低阶分段函数 , 又是光滑的函数,并且只需
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2008高考试题及答案
- 2025年中外合资企业合同新版范文
- Chondramide-A-生命科学试剂-MCE
- 2025农业生产设备租赁合同
- 2025年劳动合同续签年限规定
- 《2025专利权保密合同》
- 2025年买卖个人合同协议书模板
- 2025合同范本健身会所会员注册协议模板
- 2025二手房买卖合同(未办房产证转让版)
- 2025典当借款合同范本
- 接送孩子申请书
- 项目管理与工期控制
- 事故隐患内部报告奖励制度
- 《轮胎干地操纵稳定性主观评价方法》
- 《家用电器销售管理系统的设计与实现》2000字(论文)
- 医院培训课件:《住院患者VTE风险评估及预防》
- 导师带徒职责
- 新思想引领新征程新青年建功新时代-(第二版)
- 医学微生物学知到智慧树章节测试课后答案2024年秋山东第一医科大学
- 【MOOC】英语畅谈中国-湖北大学 中国大学慕课MOOC答案
- 基本公共卫生服务培训计划
评论
0/150
提交评论