物理光学第1讲-光的电磁理论基础_球面波和柱面波_第1页
物理光学第1讲-光的电磁理论基础_球面波和柱面波_第2页
物理光学第1讲-光的电磁理论基础_球面波和柱面波_第3页
物理光学第1讲-光的电磁理论基础_球面波和柱面波_第4页
物理光学第1讲-光的电磁理论基础_球面波和柱面波_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1 工程光学(第三版)工程光学(第三版) 下下篇篇 物理光学物理光学 2 几何光学几何光学: 不涉及光的物理本性;不涉及光的物理本性; 依据基本实验定律几何定理依据基本实验定律几何定理 处理光的传处理光的传 播、成像及应用等,说播、成像及应用等,说 明光通过介质时的现象。明光通过介质时的现象。 基本物理量:波面、光线(点、线、面)基本物理量:波面、光线(点、线、面) 几何光学是物理光学在波长趋于零时的一种近几何光学是物理光学在波长趋于零时的一种近 似;似; 几何光学几何光学 下下篇篇 物理光学物理光学 3 物理物理光学光学 物理光学物理光学:研究光的物理本性、传播规律的学科。:研究光的物理本性

2、、传播规律的学科。 波动光学:把波动光学:把光光这种物质看成是这种物质看成是电磁波电磁波。 以波动观点讨论光学问题;以波动观点讨论光学问题; 采用波长、相位等波动概念描述;采用波长、相位等波动概念描述; 量子光学:把量子光学:把光光这种物质看成是这种物质看成是能量子能量子, 即即光子光子。 以量子观点讨论光学以量子观点讨论光学问问 题。题。 下下篇篇 物理光学物理光学 4 l 第十一章第十一章 光的电磁理论基础光的电磁理论基础 l 第十二章第十二章 光的干涉和干涉系统光的干涉和干涉系统 l 第十三章第十三章 光的衍射光的衍射 l 第十五章第十五章 光的偏振和晶体光学基础光的偏振和晶体光学基础

3、第十一章第十一章 光的电磁理论基础光的电磁理论基础 5 十九世纪六十年代,麦克斯韦(Maxwell)在前 人工作基础上,完成了题为“电磁场的动力学” 的论文,从而建立起经典的电磁理论,即电磁 场的基本方程麦克斯韦方程组。他在研究电磁 场理论的同时,还把光学现象和电磁现象联系起 来,进一步指出光也是一种电磁波。这种把光波当做电磁 波来处理的理论称为光的电磁理论,它是波动光学的理论 基础。 第十一章第十一章 光的电磁理论基础光的电磁理论基础 6 Maxwell Maxwell 光是一种电磁波光是一种电磁波 Hertz Hertz 光波就是电磁波光波就是电磁波 光的电磁理论光的电磁理论 经典光学经典

4、光学 现代光学现代光学 重要重要 理论基理论基 础础 本章叙述光的本章叙述光的电磁性质电磁性质;光在均匀媒质中传播的基本光在均匀媒质中传播的基本 规律规律;光波的叠加和复杂波分析的基本处理光波的叠加和复杂波分析的基本处理。 第一节第一节 光的电磁波性质光的电磁波性质 7 一、电磁场的波动性一、电磁场的波动性 (一)(一) 麦克斯韦方程组麦克斯韦方程组 sd t D IldH sd t B dt d ldE sdB QsdD l l S S 0 1 1、积分积分形式形式 高斯定理高斯定理: 磁通连续定理:磁通连续定理: 法拉第电磁感应定理:法拉第电磁感应定理: 安倍全电流定律安倍全电流定律 D

5、E B H :电感强度 :电场强度 :磁感强度 :磁场强度 Q: 闭合曲面内 的电荷数 :磁通量 后面后面两个公式反映了磁场和电场之间的相互作用。两个公式反映了磁场和电场之间的相互作用。 第一节第一节 光的电磁波性质光的电磁波性质 8 2 2、微分形式、微分形式: :位移电流密度。 导电流密度;:积分闭合回路上的传 度;:封闭曲面内的电荷密 t D j 时域的变化 空间位置的变化 t z z y y x x 000 0 D B B E t D Hj t 第一节第一节 光的电磁波性质光的电磁波性质 9 (二)(二) 物质物质方程:描写物质在场作用下特性的关系式。方程:描写物质在场作用下特性的关系

6、式。 HB ED Ej :电导率; :介电常数; :磁导率。 )库秒(牛 )米牛(库 , 在真空中: 22227 0 222212 0 /104 /108542. 8 0 CSN mNC Maxwell Maxwell 方程组方程组 物质方程物质方程 描述时变场情况下电磁场的普遍规律。描述时变场情况下电磁场的普遍规律。 第一节第一节 光的电磁波性质光的电磁波性质 10 (三)(三) 电磁场的波动性:交变电磁场在空间以一定的速度电磁场的波动性:交变电磁场在空间以一定的速度 由近及远地传播,形成电磁波由近及远地传播,形成电磁波 00EB B E t E B t 点积为零,叉积与时间偏导成正比 2

7、2 2 0 E EB tt EEE E 2 2 22 2 2 22 1 0 1 0 E E vt B B vt 结果: (11-13) (11-14)()()()AB CA C BA B C rrr rrrrrr 第一节第一节 光的电磁波性质光的电磁波性质 11 0 0 2 2 2 2 2 2 t B B t E E 结果: sc v /. 8 00 109979421 1 光速: 电磁波的传播速度: 00 rr rr ; 和相对磁导率引入相对介电常数 rr rr vc nc v 引入相对介电常数和相对磁导率电磁波的速度: 介质对电磁波的折射率: 第一节第一节 光的电磁波性质光的电磁波性质 1

8、2 第一节第一节 光的电磁波性质光的电磁波性质 13 二二、平面电磁波及其性质、平面电磁波及其性质 (一)(一) 平面简谐电磁波的波函数平面简谐电磁波的波函数 波动方程的平面波解波动方程的平面波解 求解波动方程,得通解(数学物理方法求解波动方程,得通解(数学物理方法达朗贝尔公式)达朗贝尔公式) f f1 1和和f f2 2为两个任意函数,代表以相同速度沿为两个任意函数,代表以相同速度沿z z轴正向和负方向传轴正向和负方向传 播的平面波。播的平面波。 通常选取沿通常选取沿z z轴正方向行进的形式轴正方向行进的形式 第一节第一节 光的电磁波性质光的电磁波性质 14 二二、平面电磁波及其性质、平面电

9、磁波及其性质 (一)(一) 平面简谐电磁波的波函数平面简谐电磁波的波函数 波动方程的波动方程的平面波解,平面电磁波平面波解,平面电磁波: :电场或磁场在与传播方向电场或磁场在与传播方向正正 交交的平面上各点具有相同值的波的平面上各点具有相同值的波。 求解波动方程,得通解(数学物理方法求解波动方程,得通解(数学物理方法达朗贝尔公式)达朗贝尔公式) f f1 1和和f f2 2为两个任意函数,代表以相同速度沿为两个任意函数,代表以相同速度沿z z轴正向和负方向传轴正向和负方向传 播的平面波。播的平面波。 通常选取沿通常选取沿z z轴正方向行进的形式轴正方向行进的形式 1 1、平面电磁波的波函数、平

10、面电磁波的波函数 第一节第一节 光的电磁波性质光的电磁波性质 15 2 2、平面简谐电磁波的波函数、平面简谐电磁波的波函数 ck kvk n cTT T / / / , / 00 0 0 2 2 22 空间角频率:波数 :波长 :振动频率 )(cos )(cos t v z AB t v z AE () A A z t v :电场振幅矢量 :磁场振幅矢量 :角频率 称为相位相位相位是时间和是时间和 空间坐标的函空间坐标的函 数,表示平面数,表示平面 波在不同时刻波在不同时刻 空间各点的振空间各点的振 动状态。动状态。 第一节第一节 光的电磁波性质光的电磁波性质 16 )cos( )(cos t

11、kzAE T tz AE 2 波函数:波函数: (1125) (1126) 公式描述的波是一个具有单一频率、在时间和空间上无限延伸的波。公式描述的波是一个具有单一频率、在时间和空间上无限延伸的波。 。和空间角频率 、一时刻,参量: 某在空间域中(时间轴为 k /1 、及角频率、参量: )在时间域中(空间某点 T orT 第一节第一节 光的电磁波性质光的电磁波性质 17 (二二) 任一方向任一方向 k k 传播的平面简谐波的波函数传播的平面简谐波的波函数 k P( x,y,z ) x y z r o s= r k cos() coscoscoscos EAkrt EAk xyzt exp ()E

12、Ai krt 平面波的复数形式: exp()EAikr 复振幅: 复振幅:只关心光波在复振幅:只关心光波在 空间的分布。空间的分布。 沿空间任一沿空间任一方向方向 传播传播的平面波的波动公式:的平面波的波动公式: k (三)(三) 平面简谐波的复数表示和复振幅平面简谐波的复数表示和复振幅 第一节第一节 光的电磁波性质光的电磁波性质 18 (四)(四)平面电磁波的性质平面电磁波的性质 1 1、横波特性:电矢量和磁矢量的方向均垂直于波的传播、横波特性:电矢量和磁矢量的方向均垂直于波的传播 方向。方向。 2 2、E E、B B、k k互成右手螺旋系。互成右手螺旋系。 )()(EkEk v B 00 1 3 3、E E和和B B同同相位相位 v B E 1 第一节第一节 光的电磁波性质光的电磁波性质 19 三、球面波(点光源)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论