




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、人教版数学七年级下册第七章平面直角坐标系测试卷一、单选题(共10题;共20分)1.点P(2,3)在第四象限,则点P到x轴的距离是( ) A.2B.3C.-2D.-32.课间操时,小华、小军和小刚的位置如图所示,如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示为( ) A.(5,4)B.(4,5)C.(3,4)D.(4,3)3.点C在 轴的下方, 轴的右侧,距离 轴3个单位长度,距离 轴5个单位长度,则点C的坐标为( ) A.(3,5)B.(3,5)C.(5,3)D.(5,3)4.如图,学校相对于小明家的位置下列描述最准确的是( ) A.距离学校 1200 米处
2、B.北偏东 65 方向上的 1200 米处C.南偏西 65 方向上的 1200 米处D.南偏西 25 方向上的 1200 米处5.将点A(-2,3)沿x轴向左平移3个单位长度,再沿y轴向上平移4个单位长度后得到的点A的坐标为( ) A.(1,7)B.(1,-1)C.(-5,-1)D.(-5,7)6.如图,在平面直角坐标系中,点根据这个规律,探究可得点 A1(1,2) , A2(2,0) , A3(3,-2) , A4(4,0) .根据这个规律,探究可得点 A2020 的坐标是( ) A.(2020,0)B.(2020,2)C.(2020,-2)D.(2021,0)7.在平面直角坐标系中,对于平
3、面内任一点(a,b),若规定以下三种变换:f(a,b)=(-a,b),如f(1,2)=(-1,2);g(a,b)=(b,a),如g(1,2)=(2,1);h(a,b)=(-a,-b),如h(1,2)=(-1,-2);按照以上变换有:g(h(f(1,2)=g(h(-1,2)=g(1,-2)=(-2,1),那么h(f(g(3,-4)等于( ) A.(4,-3)B.(-4,3)C.(-4,-3)D.(4,3)8.如图,点 A,B 的坐标分别为 (1,2) 、 (4,0) ,将 AOB 沿 x 轴向右平移,得到三角形 CDE ,已知 DB=1 ,则点 C 的坐标为( ) A.(5,2)B.(4,2)C
4、.(5,3)D.(4,3)9.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为(1,0)、(2,0)、(2,1)、(1,1)、(1,2)、(2,2)、,根据这个规律,第2019个点的坐标为( ) A.(45,10)B.(45,6)C.(45,22)D.(45,0)10.如图,点A1(1,1),点A1向上平移1个单位,再向右平移2个单位,得到点A2;点A2向上平移2个单位,再向右平移4个单位,得到点A3;点A3向上平移4个单位,再向右平移8个单位,得到点A4 , ,按这个规律平移得到点An , 则点An的横坐标为() A.2nB.2n-1C.2n-1D.2n+1二、填空题(共1
5、0题;共30分)11.点P(3,-4)到x轴的距离是_ 12.已知坐标平面内一动点P(1,2),先沿x轴的正方向平移3个单位,再沿y轴的负半轴方向平移3个单位后停止,此时P的坐标是_ 13.如图,在围棋盘上有三枚棋子,如果黑棋的位置用坐标表示为 (0,-1) ,黑棋的位置用坐标表示为 (-3,0) ,则白棋的位置用坐标表示为_. 14.若点A(m+3,1-m)在y轴上,则点A的坐标为_。 15.已知点A(1,0),B(2,2),点P在y轴上,且PAB的面积为5,则点P的坐标是_ 16.如图,若在中国象棋盘上建立平面直角坐标系,使“帅”位于点 ,“马”位于点 ,则“兵”位于点_. 17.如图,在
6、方格纸上,ABC向右平移_格后得到A1B1C1.18.如图,在直角坐标系中,右边的蝴蝶是由左边的蝴蝶飞过去以后得到的,左图案中左右翅尖的坐标分别是(4,2)、(2,2),右图案中左翅尖的坐标是(3,4),则右图案中右翅尖的坐标是_.19.如图,已知A1(1,0),A2(1,1),A3(1,1),A4(1,1),A5(2,1),则点A20的坐标是_ 20.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点 A1(0,1) , A2(1,1) , A3(1,0) , A4(2,0) , 那么点 A2018 的坐标为_. 三、解答题(共4题
7、;共35分)21.古城黄州以其名胜古迹吸引了不少游客,从地图上看,较有名的六外景点在黄州城内的分布是东坡赤壁在市政府以西2km再往南3km处,黄冈中学在市政府以东1km处,宝塔公园在市政府以东3km处,鄂黄大桥在市政府以东7km再往北8km处,遗爱湖在市政府以东4km再往北4km处,博物馆在市政府以北2km再往西1km处请画图表示出这六个景点的位置,并用坐标表示出来 22.已知四边形AOCD是放置在平面直角坐标系内的梯形,其中O是坐标原点,点A,C,D的坐标分别为(0,8),(5,0),(3,8).若点P在梯形内,且PAD的面积等于POC的面积,PAO的面积等于PCD的面积. 求点P的坐标.
8、23.如图,将ABC中向右平移4个单位得到ABC写出A、B、C的坐标;画出ABC;求ABC的面积24.阅读与理解: 如图,一只甲虫在55的方格(每个方格边长均为1)上沿着网格线爬行若我们规定:在如图网格中,向上(或向右)爬行记为“+”,向下(或向左)爬行记为“-”,并且第一个数表示左右方向,第二个数表示上下方向。例如:从A到B记为:AB(+1,+4),从D到C记为:DC(-1,+2)。思考与应用:(1)图中AC(_,_); BC(_,_);DA(_,_)。(2)若甲虫从A到P的行走路线依次为:(+3,+2)(+1,+3)(+1,-2),请在图中标出P的位置。 (3)若甲虫的行走路线为A一(+1
9、,+4)(+2,0)(+1,-2)-(-4,-2),请计算该甲虫走过的总路程。 四、综合题(共1题;共15分)25.如图 1,在平面直角坐标系中,已知点A(a,0),B(b,0),C(2,7),连接 AC,交y轴于 D,且 a=3-125 , (b)2=5 . (1)求点D的坐标. (2)如图 2,y轴上是否存在一点P,使得ACP的面积与ABC的面积相等?若存在,求点P的坐标,若不存在,说明理由. (3)如图 3,若 Q(m,n)是 x轴上方一点,且 QBC 的面积为20,试说明:7m3n是否为定值,若为定值,请求出其值,若不是,请说明理由. 答案解析一、单选题1.【答案】 B 【考点】点的坐
10、标 【解析】【解答】P点的纵坐标为-3, 则其到x轴的距离为|-3|=3故答案为:B 【分析】点到x轴的距离即是其纵坐标的绝对值2.【答案】 D 【考点】用坐标表示地理位置 【解析】【解答】如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,如图所示就是以小华为原点的平面直角坐标系的第一象限, 所以小刚的位置为(4,3)故答案为:D【分析】根据已知两点的坐标确定平面直角坐标系,然后确定其它各点的坐标即可解答3.【答案】 C 【考点】点的坐标 【解析】【解答】解:点C在x轴的下方,y轴的右侧, 点C在第四象限;点C距离x轴3个单位长度,距离y轴5个单位长度,点C的坐标为(5,-3),故答
11、案为:C【分析】点C在x轴的下方,y轴的右侧,易得此点在第四象限,根据距离x轴3个单位长度,可得点的纵坐标,根据距离y轴5个单位长度可得点的横坐标4.【答案】 B 【考点】用坐标表示地理位置 【解析】【解答】根据图表的信息,学校在小明家北偏东65(180-115=65)方向上,距离为1200米; A.距离学校 1200 米处只说明了距离,没有说明方向,故不是答案;B.学校在小明家北偏东 65 方向上的 1200 米处,故正确;C.学校在小明家北偏东 65 方向上的 1200 米处,故不是答案;D.学校在小明家北偏东 65 方向上的 1200 米处,故不是答案;故答案为:B.【分析】根据图表的信
12、息,分析小明家的位置和学校的位置,即可得到答案.5.【答案】 D 【考点】坐标与图形变化平移 【解析】【解答】A点向左平移,即横坐标-3,在向上平移4个,即纵坐标4,所以 A的坐标为(-5,7) 故答案为:D【分析】根据坐标平移的定义,可计算得到平移后的坐标。6.【答案】 A 【考点】点的坐标 【解析】【解答】通过观察发现,点的横坐标依次是0,1,2,3,点的纵坐标为2,0,-2,0四个数一循环, 20204=505 , A2020 的横坐标为2020,纵坐标为0,点 A2020 的坐标是(2020,0)故答案为:A【分析】观察点的横纵坐标的特点,找出规律,利用规律即可得出答案7.【答案】 C
13、 【考点】点的坐标 【解析】【解答】由已知条件可得h(f(g(3,-4)= h(f(-4,3)= h(4,3)=(-4,-3) 故答案为:C【分析】根据f(a,b)=(-a,b)g(a,b)=(b,a)h(a,b)=(-a,-b),可得答案8.【答案】 B 【考点】坐标与图形变化平移 【解析】【解答】解:点B的坐标为 (4,0) ,BD=1, OB=4,OD=4-1=3,OAB向右平移了3个单位,点A的坐标为 (1,2) ,点C的坐标为 (4,2) ,故答案为:B.【分析】根据点B的坐标以及BD=1可得OD=3,得到OAB向右平移了3个单位,根据点A的坐标即可得到点C的坐标.9.【答案】 B
14、【考点】点的坐标 【解析】【解答】解:将其左侧相连,看作正方形边上的点,如图所示 边长为0的正方形,有1个点;边长为1的正方形,有3个点;边长为2的正方形,有5个点;,边长为n的正方形有2n+1个点,边长为n的正方形边上与内部共有1+3+5+2n+1=(n+1)2个点2019=4545-6,结合图形即可得知第2019个点的坐标为(45,6)故答案为:B【分析】将其左侧相连,看作正方形边上的点分析边上点的个数得出规律“边长为n的正方形边上有2n+1个点”,将边长为n的正方形边上点与内部点相加得出共有(n+1)2个点,由此规律结合图形的特点可以找出第2019个点的坐标10.【答案】 C 【考点】点
15、的坐标,坐标与图形变化平移 【解析】【解答】解:点A1的横坐标为1=21-1, 点A2的横坐为标3=22-1,点A3的横坐标为7=23-1,点A4的横坐标为15=24-1,按这个规律平移得到点An的横坐标为为2n-1,故答案为:C【分析】先求出点A1 , A2 , A3 , A4的横坐标,再从特殊到一般探究出规律,然后利用规律即可解决问题二、填空题11.【答案】 4 【考点】点的坐标 【解析】【解答】解:根据点与坐标系的关系知,点到x轴的距离为点的纵坐标的绝对值, 故点P(3,4)到x轴的距离是4. 【分析】根据平面直角坐标系中,点到x轴的距离为点的纵坐标的绝对值,点到y轴的距离为点的横坐标的
16、绝对值,即可求解.12.【答案】 (4,-1) 【考点】坐标与图形变化平移 【解析】【解答】平移后点P的坐标为(4.-1). 故答案为(4,-1). 【分析】根据平移的点的坐标变化规律“左减右加、上加下减”可求解。13.【答案】 (-4,2) 【考点】用坐标表示地理位置 【解析】【解答】根据黑棋和黑棋可以确定出原点的位置为黑棋正上方一格处的那个点,则白棋的位置用坐标表示为(-4,2). 故答案为:(-4,2). 【分析】先根据黑棋和黑棋可以确定出原点的位置为黑棋正上方一格处的那个点,则可解决此题.14.【答案】 (0,4) 【考点】坐标与图形性质 【解析】【解答】因为A点在y轴上,所以横坐标为
17、0,即m+3=0,m=-3, A点坐标为(0,4) 【分析】根据在坐标轴上点的性质,可求得m的值,得到A点坐标。15.【答案】 (0,8)或(0,12) 【考点】坐标与图形性质 【解析】【解答】分两种情况: 当P在x轴上方时,如图1,过B作BEx轴于E,SPABS梯形OPBESPOASABE5,12 (2+OP)2 12 OP1 12 (21)25,OP8,P(0,8);当P在x轴下方时,如图2,过B作BEy轴于E,SPABSPBESPOAS梯形OABE5,12 2(OP+2) 12 1OP 12 2(1+2)5,OP12,P(0,12),综上所述,点P的坐标为(0,8)或(0,12)【分析】
18、分两种情况:P在x轴上方,P在x轴下方,根据面积公式列式可得结论16.【答案】【考点】点的坐标 【解析】【解答】解:根据帅的坐标,建立坐标系,如图所示,然后判断得(-3,1). 故答案为:(-3,1) 【分析】根据帅坐标建立出平面直角坐标系,再根据兵所在的象限得出其坐标.17.【答案】4 【考点】坐标与图形变化平移 【解析】【解答】解:点A的对应点是A1 , 点A到点A1的距离是4个单位ABC向右平移4格后得到A1B1C1.故答案为:4【分析】观察一组对应点的的位置,即可得出答案。18.【答案】(5,4) 【考点】坐标与图形变化平移 【解析】【解答】解:左图案中左翅尖的坐标是(-4,2),右图
19、案中左翅尖的坐标是(3,4),变化规律为横坐标加7,纵坐标加2,左图案中右翅尖的坐标是(-2,2),右图案中右翅尖的坐标是(5,4),故答案为:(5,4)【分析】平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减19.【答案】 (5,5) 【考点】点的坐标 【解析】【解答】解:由题可知 第一象限的点:A5 , A9 , A13角标除以4余数为1;第二象限的点:A4 , A8 , A12角标除以4余数为0;第三象限的点:A3 , A7 , A11角标除以4余数为3;第四象限的点:A2 , A6 , A10角标除以4余数为2;由上规律可知:2045点A20在第二象限又点A4(1,1)
20、,A8(2,2),A12(3,3)在第一象限,A4(44,44),A8(84,84),A12(124,124)A20(204,204)A20(5,5)故答案为(5,5)【分析】观察已知坐标可得是4的倍数的点在第二象限,4的倍数余1的点在第一象限,4的倍数余2的点在第二象限,4的倍数余3的点在第三象限,由204=5,可得点A20在第二象限,据此解答即可.20.【答案】 (1009,1) 【考点】点的坐标,坐标与图形变化平移 【解析】【解答】根据题意得: A1(0,1),A5(2,1),A9(4,1),A13(6,1),所以A4n1(2n,1).因为201745041210081,所以A2017(
21、1008,1),则A2018(1009,1).故答案为A2018(1009,1).【分析】分析:任选一个除原点外的点找出它的坐标,往后每隔4取一个点找出它的坐标,这样以4为周期得到相应位置的点的坐标规律,找出比2018小且最接近2018的这个位置的点的坐标即可求解.三、解答题21.【答案】解:如下图所示:其坐标分别为东坡赤壁为(2,3),黄冈中学为(1,0),宝塔公园为(3,0),鄂黄大桥为(7,8),遗爱湖为(4,4),博物馆为(1,2) 【考点】坐标确定位置 【解析】【分析】考查建立平面直角坐标系,主要考查用坐标表示位置考点的理解.首先确定原点市政府 , 然后画出x,y轴,定单位长度为1k
22、m.根据题意描点即可.22.【答案】 解:如图,过点P作PEy轴于点E 因为:点A,C,D的坐标分别为(0,8),(5,0),(3,8),PAD的面积等于POC的面积,所以: 12 3AE= 12 5OE,即3(8-OE)=5OE,解得:OE=3所以:PAD的面积=POC的面积= 12 35=7.5,PAO的面积=PCD的面积=3582-27.52=8.5,则 12 8PE=8.5,即PE= 178 ,所以:点P的坐标是( 178 ,3)【考点】坐标与图形性质 【解析】【分析】根据题意画出图形,过点P作PEy轴于点E,利用PAD的面积等于POC的面积,得出EO的长,进而得出PE的长,即可得出P
23、点坐标23.【答案】解:由图可知,A(4,1)、B(2,0)、C(1,3);如图,ABC即为所求;SABC=33 12 21 12 31 12 23=91 32 3= 72 故答案为:A(4,1)、B(2,0)、C(1,3);ABC即为所求;72. 【考点】坐标与图形变化平移 【解析】【分析】根据各点在坐标系中的位置写出各点坐标即可;根据图形平移的性质画出ABC即可;利用正方形的面积减去三个顶点上三角形的面积即可24.【答案】 (1)+3;+4;+2;0;4;2(2)解:如图2所示. (3)解:甲虫走过的总路程: |+1|+|+4|+|+2|+|+1|+|2|+|4|+|2|=16.【考点】坐标与图形性质 【解析】【分析】(1)根据题意,可依次表示出行走方向。 (2)根据所走的路线,可找出P的位置。 (3)根据行走路线,计算得出总路程。四、综合题25.【答案】 (1)解: a=3-125 , (b)2=5 , a
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 纸张使用指南
- 化学废水排放监管制度执行执行
- 考研中的挑战与应对之策
- 代码管理规定
- 服装制作工艺方案
- 2025浙江嘉北街道招聘公益性岗位1人(第1号)笔试备考试题及答案解析
- 物业资产管理与财务审计要点
- 皮草设计原理分析报告
- 2025下半年浙江省海洋开发研究院招聘紧缺高层次人才2人笔试备考题库及答案解析
- 矿山开采权评估方案
- YY 1727-2020口腔黏膜渗出液人类免疫缺陷病毒抗体检测试剂盒(胶体金免疫层析法)
- 粘膜免疫系统概述
- 10室外配电线路工程定额套用及项目设置
- 钢板桩及支撑施工方案
- 急救中心急救站点建设标准
- 冷藏车保温箱冰排使用记录
- 消防安全知识宣传-主题班会课件(共24张PPT)
- 幼儿园课件我从哪里来
- 高效液相色谱法-PPT课件
- 精细化学品化学-课件
- T∕CIS 71001-2021 化工安全仪表系统安全要求规格书编制导则
评论
0/150
提交评论