第3讲 空间点、直线、平面之间的位置关系_第1页
第3讲 空间点、直线、平面之间的位置关系_第2页
第3讲 空间点、直线、平面之间的位置关系_第3页
第3讲 空间点、直线、平面之间的位置关系_第4页
第3讲 空间点、直线、平面之间的位置关系_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第3讲空间点、直线、平面之间的位置关系【高考会这样考】1本讲以考查点、线、面的位置关系为主,同时考查逻辑推理能力与空间想象能力2有时考查应用公理、定理证明点共线、线共点、线共面的问题3能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题【复习指导】1掌握平面的基本性质,在充分理解本讲公理、推论的基础上结合图形理解点、线、面的位置关系及等角定理2异面直线的判定与证明是本部分的难点,定义的理解与运用是关键基础梳理1平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内(2)公理2:经过不在同一条直线上的三点,有且只有一个平面(3)公理3:如

2、果两个平面(不重合的两个平面)有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线推论1:经过一条直线和这条直线外一点,有且只有一个平面推论2:经过两条相交直线,有且只有一个平面推论3:经过两条平行直线,有且只有一个平面2直线与直线的位置关系(1)位置关系的分类(2)异面直线所成的角定义:设a,b是两条异面直线,经过空间任一点O作直线aa,bb,把a与b所成的锐角或直角叫做异面直线a,b所成的角(或夹角)范围:.3直线与平面的位置关系有平行、相交、在平面内三种情况4平面与平面的位置关系有平行、相交两种情况5平行公理:平行于同一条直线的两条直线互相平行6等角定理:

3、空间中如果两个角的两边分别对应平行,那么这两个角相等或互补两种方法异面直线的判定方法:(1)判定定理:平面外一点A与平面内一点B的连线和平面内不经过该点的直线是异面直线(2)反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面三个作用(1)公理1的作用:检验平面;判断直线在平面内;由直线在平面内判断直线上的点在平面内(2)公理2的作用:公理2及其推论给出了确定一个平面或判断“直线共面”的方法(3)公理3的作用:判定两平面相交;作两平面相交的交线;证明多点共线双基自测1(人教A版教材习题改编)下列命题是真命题的是()A空间中不同三点确定一个平面B空间中两两相交的三条直线确定一个

4、平面C一条直线和一个点能确定一个平面D梯形一定是平面图形2已知a,b是异面直线,直线c平行于直线a,那么c与b()A一定是异面直线 B一定是相交直线C不可能是平行直线 D不可能是相交直线3(2011浙江)下列命题中错误的是()A如果平面平面,那么平面内一定存在直线平行于平面B如果平面不垂直于平面,那么平面内一定不存在直线垂直于平面C如果平面平面,平面平面,l,那么l平面D如果平面平面,那么平面内所有直线都垂直于平面4(2011武汉月考)如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线()A12对 B24对 C36对 D48对5两个不重合的平面可以把空间分成_部分答案3或4考向

5、一平面的基本性质【例1】正方体ABCDA1B1C1D1中,P、Q、R分别是AB、AD、B1C1的中点,那么,正方体的过P、Q、R的截面图形是()A三角形 B四边形 C五边形 D六边形【训练1】 下列如图所示是正方体和正四面体,P、Q、R、S分别是所在棱的中点,则四个点共面的图形是_考向二异面直线【例2】如图所示,正方体ABCDA1B1C1D1中,M、N分别是A1B1、B1C1的中点问:(1)AM和CN是否是异面直线?说明理由;(2)D1B和CC1是否是异面直线?说明理由【训练2】 在下图中,G、H、M、N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH、MN是异面直线的图形有_(填上所有正确

6、答案的序号)考向三异面直线所成的角【例3】(2011宁波调研)正方体ABCDA1B1C1D1中(1)求AC与A1D所成角的大小;(2)若E、F分别为AB、AD的中点,求A1C1与EF所成角的大小【训练3】 A是BCD平面外的一点,E,F分别是BC,AD的中点(1)求证:直线EF与BD是异面直线;(2)若ACBD,ACBD,求EF与BD所成的角考向四点共线、点共面、线共点的证明【例4】正方体ABCDA1B1C1D1中,E、F分别是AB和AA1的中点求证:(1)E、C、D1、F四点共面;(2)CE、D1F、DA三线共点【训练4】 如图所示,已知空间四边形ABCD中,E、H分别是边AB、AD的中点,

7、F、G分别是边BC、CD上的点,且,求证:三条直线EF、GH、阅卷报告10点、直线、平面位置关系考虑不全致误【问题诊断】 由于空间点、直线、平面的位置关系是在空间考虑,这与在平面上考虑点、线的位置关系相比复杂了很多,特别是当直线和平面的个数较多时,各种位置关系错综复杂、相互交织,如果考虑不全面就会导致一些错误的判断【防范措施】 借助正方体、三棱锥、三棱柱模型来分析【示例】(2011四川)l1,l2,l3是空间三条不同的直线,则下列命题正确的是()Al1l2,l2l3l1l3Bl1l2,l2l3l1l3Cl1l2l3l1,l2,l3共面Dl1,l2,l3共点l1,l2,l3共面错因受平面几何知识

8、限制,未能全面考虑空间中的情况实录甲同学:A乙同学:C丙同学:D.正解在空间中,垂直于同一直线的两条直线不一定平行,故A错;两平行线中的一条垂直于第三条直线,则另一条也垂直于第三条直线,B正确;相互平行的三条直线不一定共面,如三棱柱的三条侧棱,故C错;共点的三条直线不一定共面,如三棱锥的三条侧棱,故D错答案B【试一试】 (2010江西)过正方体ABCDA1B1C1D1的顶点A作直线l,使l与棱AB,AD,AA1所成的角都相等,这样的直线l可以作()A1条 B2条C3条 D4条尝试解答如图,连结体对角线AC1,显然AC1与棱AB、AD,AA1所成的角都相等,所成角的正切值都为.联想正方体的其他体对角线,如连结BD1,则BD1与棱BC、B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论