函数单调性判断或证明方法_第1页
函数单调性判断或证明方法_第2页
函数单调性判断或证明方法_第3页
函数单调性判断或证明方法_第4页
函数单调性判断或证明方法_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、如果您需要使用本文档,请点击下载按钮下载!函数单调性的判断或证明方法.(1) 定义法。用定义法证明函数的单调性的一般步骤是取值,设,且;作差,求;变形(合并同类项、通分、分解因式、配方等)向有利于判断差值符号的方向变形;定号,判断的正负符号,当符号不确定时,应分类讨论;下结论,根据函数单调性的定义下结论。例1.判断函数在(1,)上的单调性,并证明 解:设1x1x2, 则f(x1)f(x2) 1x1x2, x1x20,x210. 当a0时,f(x1)f(x2)0, 即f(x1)f(x2), 函数yf(x)在(1,)上单调递增 当a0, 即f(x1)f(x2), 函数yf(x)在(1,)上单调递减

2、例2.证明函数在区间和上是增函数;在上为减函数。(增两端,减中间)证明:设,则因为,所以,1 / 61 / 6如果您需要使用本文档,请点击下载按钮下载!所以,所以 所以设则,因为,所以,所以所以同理,可得(2) 运算性质法.在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数(增+增=增;减+减=减;增-减=增,减-增=减)若.当函数.函数二者有相反的单调性。运用已知结论,直接判断函数的单调性,如一次函数、反比例函数等。(3)图像法.根据函数图像的上升或下降判断函数的单调性。例3.求函数的单调区间。解:2 / 62 / 6如

3、果您需要使用本文档,请点击下载按钮下载!在同一坐标系下作出函数的图像得所以函数的单调增区间为减区间为.(4)复合函数法.(步骤:求函数的定义域;分解复合函数;判断内、外层函数的单调性;根据复合函数的单调性确定函数的单调性.若集合是内层函数的一个单调区间,则便是原复合函数的一个单调区间,如例4;若不是内层函数的一个单调区间,则需把划分成内层函数的若干个单调子区间,这些单调子区间便分别是原复合函数的单调区间,如例5.) 设,都是单调函数,则在上也是单调函数,其单调性由“同增异减”来确定,即“里外”函数增减性相同,复合函数为增函数,“里外”函数的增减性相反,复合函数为减函数。如下表: 增增增增减减减

4、增减减减增例4. 求函数的单调区间 解 原函数是由外层函数和内层函数复合而成的;3 / 63 / 6如果您需要使用本文档,请点击下载按钮下载!易知是外层函数的单调增区间;令,解得的取值范围为;由于是内层函数的一个单调减区间,于是便是原函数的一个单调区间;根据复合函数“同增异减”的复合原则知,是原函数的单调减区间。例5 求函数的单调区间. 解 原函数是由外层函数和内层函数复合而成的;易知和都是外层函数的单调减区间;令,解得的取值范围为;结合二次函数的图象可知不是内层函数的一个单调区间,但可以把区间划分成内层函数的两个单调子区间和,其中是其单调减区间,是其单调增区间;于是根据复合函数“同增异减”的

5、复合原则知,是原函数的单调增区间,是原函数的单调减区间。同理,令,可求得是原函数的单调增区间,是原函数的单调减区间。综上可知,原函数的单调增区间是和,单调减区间是和.4 / 64 / 6如果您需要使用本文档,请点击下载按钮下载!(5)含参数函数的单调性问题.例.设(先分离常数,即对函数的解析式进行变形,找到基本函数的类型,再分类讨论.)解:由题意得原函数的定义域为 ,当上为减函数;当上为增函数。(6)抽象函数的单调性.(抽象函数问题是指没有给出解析式,只给出一些特殊条件的函数问题) 常采用定义法.要充分利用已知条件,对变量进行合理赋值,并结合函数单调性的定义进行证明。例 已知函数对任意实数,均有且当时,试判断的单调性,并说明理由. 解析:设,且,则,故 故在(,)上为增函数例2. 设f(x)定义于实数集上,当时,且对于任意实数x、y,有,求证:在R上为增函数。证明:在中取,得若,令,则,与矛盾所以,即有当时,;5 / 65 / 6如果您需要使

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论