2007年全国各地高考数学试题及解答分类汇编大全(16概率_随机变量及其分布)_第1页
2007年全国各地高考数学试题及解答分类汇编大全(16概率_随机变量及其分布)_第2页
2007年全国各地高考数学试题及解答分类汇编大全(16概率_随机变量及其分布)_第3页
2007年全国各地高考数学试题及解答分类汇编大全(16概率_随机变量及其分布)_第4页
2007年全国各地高考数学试题及解答分类汇编大全(16概率_随机变量及其分布)_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2007年高考中的“概率、随机变量及其分布”试题汇编大全一、选择题:1.(2007福建理)如图,三行三列的方阵有9个数(i1,2,3;j1,2,3),从中任取三个数,则至少有两个数位于同行或同列的概率是( D )A B C D 2. ( 2007广东文)在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是( A )3. (2007湖北文)将5本不同的书全发给4名同学,每名同学至少有一本书的概率是( A )A. B. C. D. 4. (2007湖北理)连掷两次骰子得到的点数分别为m和n,记向量

2、a=(m,n)与向量b=(1,-1)的夹角为,则的概率是( C )A. B. C. D5(2007江西文)一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号和不小于15的概率为( ) A B C D6(2007江西理)将一个骰子连续抛掷三次,它落地时向上的点数依次成等差数列的概率为( B ) A B C D7(2007辽宁文、理)一个坛子里有编号为1,2,12的12个大小相同的球,其中1到6号球是红球,其余的是黑球,若从中任取两个球,则取到的都是红球,且至少有1个球的号码是偶数的概率是( D )ABCD8(2007山东文

3、)设集合,分别从集合和中随机取一个数和,确定平面上的一个点,记“点落在直线上”为事件,若事件的概率最大,则的所有可能值为( D )A3B4C2和5D3和49.(2007四川理)已知一组抛物线,其中a为2,4,6,8中任取的一个数,b为1,3,5,7中任取的一个数,从这些抛物线中任意抽取两条,它们在与直线x=1交点处的切线相互平行的概率是( B )(A)(B)(C)(D)10.(2007重庆文、理)从5张100元,3张200元,2张300元的奥运预赛门票中任取3张,则所取3张中至少有2张价格相同的概率为( C )(A)(B)(C)(D)11.(2007安徽理)以表示标准正态总体在区间()内取值的

4、概率,若随机变量服从正态分布,则概率等于( B ) (A)-(B) (C)(D)12.(2007湖南理)设随机变量服从标准正态分布,已知,则=( C )A0.025B0.050C0.950D0.97513.(2007山东理)位于坐标原点的一个质点P按下述规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是.质点P 移动5次后位于点的概率为( B )(A) (B) (C) (D) 14.(2007浙江文)甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜根据经验,每局比赛中甲获胜的概率为06,则本次比赛甲获胜的概率是( D ) (A1 0216

5、(B)036 (C)0432 (D)064815.(2007浙江理)已知随机变量服从正态分布,则( A )ABCD,16.(2007浙江理)随机变量的分布列如下:其中成等差数列,若,则的值是 二.填空题:1. (2007安徽文)在正方体上任意选择两条棱,则这两条棱相互平行的概率为 .2. (2007广东理)甲、乙两个袋中均装有红、白两种颜色的小球,这些小球除颜色外完全相同.其中甲袋装有4个红球,2个白球,乙袋装有1个红球,5个白球. 现分别从甲、乙两袋中各随机取出一个球,则取出的两球都是红球的概率为 . .(答案用分数表示)3.(2007全国文)一个总体含有100个个体,以简单随机抽样方式从该

6、总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为 .4.(2007上海文、理)在五个数字中,若随机取出三个数字,则剩下两个数字都是奇数的概率是 0.3 (结果用数值表示) 5.(2007福建理)两封信随机投入A、B、C三个空邮箱,则A邮箱的信件数的数学期望 ;6.(2007湖北文、理)某篮球运动员在三分线投球的命中率是,他投球10次,恰好投进3个球的概率为 (用数值作答)7.(2007全国理)在某项测量中,测量结果x服从正态分布N(1,s2)(s)0),若x在(0,1)内取值的概率为0.4,则x在(0,2)内取值的概率为 0.8 。三、解答题:1.(2007安徽文)(本小题满分13

7、分)在医学生物学试验中,经常以果蝇作为试验对象.一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼内共有8只蝇子:6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到两只苍蝇都飞出,再关闭小孔. ()求笼内恰好剩下1只果蝇的概率;()求笼内至少剩下5只果蝇的概率.1.本小题主要考查排列、组合知道与等可能事件、互斥事件概率的计算,运用概率知识分析问题及解决实际问题的能力.本小题满分13分.解:以表示恰剩下k只果绳的事件(k=0,1,6),以表示至少剩下m只果绳的事件(m=0,1,6).可以有多种不同的计算P的方法.方法1(组合模式):当事件发生时,第 8-k只飞出的绳子是

8、苍绳,且在前7-k只飞出的绳子中有1只苍绳,所以方法2(排列模式):当事件发生时,共飞走8-k只绳子,其中第8-k只飞出的绳子是苍绳,哪一只?有两种不同可能.在前7-k只飞出的绳子中有6-k只是果绳,有种不同的选择可能,还需考虑这7-k只绳子的排列顺序.所以由上式立得 2.(2007安徽理) (本小题满分13分)在医学生物学试验中,经常以果蝇作为试验对象,一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼内共有8只蝇子:6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到两只苍蝇都飞出,再关闭小孔.以表示笼内还剩下的果蝇的只数.()写出的分布列(不要求写出计算过程);(

9、)求数学期望E;()求概率P(E).2.本小题主要考查等可能场合下的事件概率的计算、离散型随机变量的分布列、数学期望的概念及其计算,考查分析问题及解决实际问题的能力.本小题满分13分.解:(1)的分布列为()数学期望为E()所求的概率 123 10 20 30 4050参加人数活动次数3.(2007北京理)(本小题共13分)某中学号召学生在今年春节期间至少参加一次社会公益活动(以下简称活动)该校合唱团共有100名学生,他们参加活动的次数统计如图所示(I)求合唱团学生参加活动的人均次数;(II)从合唱团中任意选两名学生,求他们参加活动次数恰好相等的概率(III)从合唱团中任选两名学生,用表示这两

10、人参加活动次数之差的绝对值,求随机变量的分布列及数学期望3(共13分)解:由图可知,参加活动1次、2次和3次的学生人数分别为10、50和40(I)该合唱团学生参加活动的人均次数为(II)从合唱团中任选两名学生,他们参加活动次数恰好相等的概率为(III)从合唱团中任选两名学生,记“这两人中一人参加1次活动,另一人参加2次活动”为事件,“这两人中一人参加2次活动,另一人参加3次活动”为事件,“这两人中一人参加1次活动,另一人参加3次活动”为事件易知;的分布列:012的数学期望:4.(2007福建文)(本小题满分12分)甲、乙两名跳高运动员一次试跳2米高度成功的概率分别为0.7、0.6,且每次试跳成

11、功与否相互之间没有影响,求:(I)甲试跳三次,第三次才能成功的概率;(II)甲、乙两人在第一次试跳中至少有一人成功的概率;(III)甲、乙各试跳两次,甲比乙的成功次数恰好多一次的概率.4.本小题主要考查概率的基础知识,运用数学知识解决问题的能力,以及推理与运算能力.满分12分.解:记“甲第i次试跳成功”为事件A1,“乙第i次试跳成功”为事件B1.依题意得P(A1)0.7,P(B1)0.6,且A1B1(i=1,2,3)相互独立.(I)“甲第三次试跳才成功”为事件A3,且三次试跳相互独立,P(A3)P()P=0.30.30.7=0.063.答:甲第三次试跳才成功的概率为0.063.(II)甲、乙两

12、支在第一次试跳中至少有一人成功为事件C,解法一:CA1彼此互斥,P(C) 0.70.4+0.30.6+0.70.6=0.88.解法二:P(C)1-1-0.30.4=0.88.答:甲、乙两人在第一次试跳中至少有一人成功的概率为0.88.(III)设“甲在两次试跳中成功i次”为事件Mi(i=0,1,2),“乙在两次试跳中成功i次”为事件Ni(i=0,1,2),事件“甲、乙各试跳两次,甲比乙的成功次数恰好多一次”可表示为M1N0+M2N1,且M1N0、M2N1为互斥事件.所求的概率为0.70.30.42+0.720.60.4=0.0672+0.2352=0.3024.答:甲、乙每人试跳两次,甲比乙的

13、成功次数恰好多一次的概率为0.3024.5(2007海南、宁夏理)(本小题满分12分)如图,面积为的正方形中有一个不规则的图形,可按下面方法估计的面积:在正方形中随机投掷个点,若个点中有个点落入中,则的面积的估计值为,假设正方形的边长为2,的面积为1,并向正方形中随机投掷个点,以表示落入中的点的数目(I)求的均值;(II)求用以上方法估计的面积时,的面积的估计值与实际值之差在区间内的概率附表:5解:每个点落入中的概率均为依题意知()()依题意所求概率为,分 组频 数4253029102合 计1006.(2007湖北理)(本小题满分12分)在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)

14、共有100个数据,将数据分组如右表:()在答题卡上完成频率分布表,并在给定的坐标系中画出频率分布直方图;()估计纤度落在中的概率及纤度小于1.40的概率是多少;()统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值是1.32)作为代表. 据此,估计纤度的期望.6.本小题主要考查频率分布直方图、概率、期望等概念和用样本频率估计总体分布的统计方法,考查运用概率统计知识解决实际问题的能力.分组频数频率4 0.0425 0.25 30 0.30 29 0.29100.1020.02合计1001.00()纤度落在中的概率约为0.30+0.29+0.100.69,纤度小于1.40的概率约为0.0

15、4+0.25+0.300.44.()总体数据的期望约为1.320.04+1.360.25+1.400.30+1.440.29+1.480.10+1.520.021.4088.7.(2007湖南文)(本小题满分分)某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训.已知参加过财会培训的有60%,参加过计算机培训的有75%.假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响. ()任选1名下岗人员,求该人参加过培训的概率; ()任选3名下岗人员,求这3人中至少有2人参加过培训的概率.7解:任选1名下岗人

16、员,记“该人参加过财会培训”为事件,“该人参加过计算机培训”为事件,由题设知,事件与相互独立,且,(I)解法一:任选1名下岗人员,该人没有参加过培训的概率是所以该人参加过培训的概率是解法二:任选1名下岗人员,该人只参加过一项培训的概率是该人参加过两项培训的概率是所以该人参加过培训的概率是(II)解法一:任选3名下岗人员,3人中只有2人参加过培训的概率是3人都参加过培训的概率是所以3人中至少有2人参加过培训的概率是解法二:任选3名下岗人员,3人中只有1人参加过培训的概率是3人都没有参加过培训的概率是所以3人中至少有2人参加过培训的概率是8(2007湖南理)(本小题满分12分)某地区为下岗人员免费

17、提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响(I)任选1名下岗人员,求该人参加过培训的概率;(II)任选3名下岗人员,记为3人中参加过培训的人数,求的分布列和期望8解:任选1名下岗人员,记“该人参加过财会培训”为事件,“该人参加过计算机培训”为事件,由题设知,事件与相互独立,且,(I)解法一:任选1名下岗人员,该人没有参加过培训的概率是所以该人参加过培训的概率是解法二:任选1名下岗人员,该人只参加过一项培

18、训的概率是该人参加过两项培训的概率是所以该人参加过培训的概率是(II)因为每个人的选择是相互独立的,所以3人中参加过培训的人数服从二项分布,即的分布列是01230.0010.0270. 2430.729的期望是(或的期望是)9(2007江苏)(本小题满分12分)某气象站天气预报的准确率为,计算(结果保留到小数点后面第2位)(1)5次预报中恰有2次准确的概率;(4分)(2)5次预报中至少有2次准确的概率;(4分)(3)5次预报中恰有2次准确,且其中第次预报准确的概率;(4分)9.解:(1)(2)(3)10(2007江西文)(本小题满分12分)栽培甲、乙两种树,先要培育成苗,然后再进行移栽已知甲、

19、乙两种果树成苗的概率分别为0.6,0.5, 移栽后成活的概率为0.7,0.9 (1)求甲、乙两种果树至少有一种果树成苗的概率; (2)求恰好有一种果树能培育成苗且移栽成活的概率10解:分别记甲、乙两种果树成苗为事件,;分别记甲、乙两种果树苗移栽成活为事件,(1)甲、乙两种果树至少有一种成苗的概率为;(2)解法一:分别记两种果树培育成苗且移栽成活为事件,则,恰好有一种果树培育成苗且移栽成活的概率为解法二:恰好有一种果树栽培成活的概率为11(2007江西理)(本小题满分12分)某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过

20、程相互独立根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为0.5, 0.6, 0.4经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为0.6,0.5,0.75 (1)求第一次烧制后恰有一件产品合格的概率; (2)经过前后两次烧制后,合格工艺品的个数为,求随机变量的期望11解:分别记甲、乙、丙经第一次烧制后合格为事件,(1)设表示第一次烧制后恰好有一件合格,则(2)解法一:因为每件工艺品经过两次烧制后合格的概率均为,所以,故解法二:分别记甲、乙、丙经过两次烧制后合格为事件,则,所以,于是,12(2007辽宁理)(本小题满分12分)某企业准备投产一批特殊型号的产品,已

21、知该种产品的成本与产量的函数关系式为该种产品的市场前景无法确定,有三种可能出现的情况,各种情形发生的概率及产品价格与产量的函数关系式如下表所示:市场情形概率价格与产量的函数关系式好0.4中0.4差0.2设分别表示市场情形好、中差时的利润,随机变量,表示当产量为,而市场前景无法确定的利润(I)分别求利润与产量的函数关系式;(II)当产量确定时,求期望;(III)试问产量取何值时,取得最大值12.本小题主要考查数学期望,利用导数求多项式函数最值等基础知识,考查运用概率和函数知识建模解决实际问题的能力.满分12分 .()解:由题意可得L1= (q0).同理可得 (q0)(q0)4分() 解:由期望定

22、义可知() 解:由()可知是产量q的函数,设(q0)得0解得(舍去).由题意及问题的实际意义(或当0q10时,f(q)0;当q10时, f(q) 0可知,当q=10时, f(q)取得最大值,即最大时的产量q为10.13.(2007全国文)(本小题满分12分)某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6.经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元.()求3位购买该商品的顾客中至少有1位采用一次性付款的概率;()求3位顾客每人购买1件该商品,商场获得利润不超过650元的概率.13解

23、:()记表示事件:“位顾客中至少位采用一次性付款”,则表示事件:“位顾客中无人采用一次性付款”,()记表示事件:“位顾客每人购买件该商品,商场获得利润不超过元”表示事件:“购买该商品的位顾客中无人采用分期付款”表示事件:“购买该商品的位顾客中恰有位采用分期付款”则,14.(2007全国理)(本小题满分12分)某商场经销某商品,根据以往资料统计,顾客采用的付款期为的分布列为12345P0.40.20.20.10.1商场经销一件该商品,采用1期付款,基利润为200元;分2期或3期付款,基利润为250元;分4期或5期付款,其利润为300元.表示经销一件该商品的利润.()求事件A:“购买该商品的3位顾

24、客中,至少有1件位采用1期付款的概率P(A);()求的分布列及期E.14.解:()由表示事件“购买该商品的3位顾客中至少有1位采用1期付款”知表示事件“购买该商品的3位顾客中无人采用1期付款”,()的可能取值为元,元,元,的分布列为(元)15.(2007全国文)(本小题满分12分)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A:“取出的2件产品中至多有1件是二等品”的概率P(A)=0.96(1)求从该批产品中任取1件是二等品的概率p;(2)若该批产品共有100件,从中任意抽取2件,求事件B:_取出的2件产品中至少有一件二等品”的概率P(B)。15(1)记表示事件“取出的2件产

25、品中无二等品”,表示事件“取出的2件产品中恰有1件二等品”则互斥,且,故 于是解得(舍去)(2)记表示事件“取出的2件产品中无二等品”,则若该批产品共100件,由(1)知其中二等品有件,故16.(2007全国理)(本小题满分12分)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A:“取出的2件产品中至多有1件是二等品”的概率P(A)=0.96(1)求从该批产品中任取1件是二等品的概率p;(2)若该批产品共有100件,从中任意抽取2件,x表示取出的2件产品中二等品的件数,求x的分布列16解:(1)记表示事件“取出的2件产品中无二等品”,表示事件“取出的2件产品中恰有1件二等品”则

26、互斥,且,故 于是解得(舍去)(2)的可能取值为若该批产品共100件,由(1)知其二等品有件,故所以的分布列为01217.(2007山东理)(本小题满分12分)设和分别是先后抛掷一枚骰子得到的点数,用随机变量表示方程实根的个数(重根按一个计)()求方程有实根的概率;()求的分布列和数学期望;()求在先后两次出现的点数中有5的条件下,方程有实根的概率17.【答案】:(I)基本事件总数为,若使方程有实根,则,即。当时,;当时,;当时,;当时,;当时,;当时,,目标事件个数为因此方程 有实根的概率为(II)由题意知,则,故的分布列为012P的数学期望(III)记“先后两次出现的点数中有5”为事件M,

27、“方程 有实根” 为事件N,则,.18(2007陕西文)(本小题满分12分)某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为、,且各轮问题能否正确回答互不影响.()求该选手进入第四轮才被淘汰的概率;()求该选手至多进入第三轮考核的概率.(注:本小题结果可用分数表示)18(本小题满分12分)解:()记“该选手能正确回答第轮的问题”的事件为,则,该选手进入第四轮才被淘汰的概率()该选手至多进入第三轮考核的概率19 (2007陕西理)(本小题满分12分)某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题

28、者进入下一轮考试,否则即被淘汰,已知某选手能正确回答第一、二、三轮的问题的概率分别为、,且各轮问题能否正确回答互不影响.()求该选手被淘汰的概率;()该选手在选拔中回答问题的个数记为,求随机变量的分布列与数数期望.(注:本小题结果可用分数表示)19(本小题满分12分)解法一:()记“该选手能正确回答第轮的问题”的事件为,则,该选手被淘汰的概率()的可能值为,的分布列为123解法二:()记“该选手能正确回答第轮的问题”的事件为,则,该选手被淘汰的概率()同解法一20.(2007四川文)(本小题满分12分)厂家在产品出厂前,需对产品做检验,厂家对一般产品致冷商家的,商家符合规定拾取一定数量的产品做

29、检验,以决定是否验收这些产品.()若厂家库房中的每件产品合格的概率为0.3,从中任意取出4种进行检验,求至少要1件是合格产品的概率.()若厂家发给商家20件产品,其中有3件不合格,按合同规定该商家从中任取2件,来进行检验,只有2件产品合格时才接收这些产品,否则拒收,分别求出该商家计算出不合格产品为1件和2件的概率,并求该商家拒收这些产品的概率。20.本题考察相互独立事件、互斥事件等的概率计算,考察运用所学知识与方法解决实际问题的能力。解:()记“厂家任取4件产品检验,其中至少有1件是合格品”为事件A 用对立事件A来算,有()记“商家任取2件产品检验,其中不合格产品数为件”为事件 ,商家拒收这批

30、产品的概率所以商家拒收这批产品的概率为21.(2007四川理)(本小题满分12分)厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.()若厂家库房中的每件产品合格的概率为0.8,从中任意取出4件进行检验.求至少有1件是合格品的概率;()若厂家发给商家20件产品,其中有3件不合格,按合同规定该商家从中任取2件,都进行检验,只有2件都合格时才接收这批产品,否则拒收.求该商家可能检验出不合格产品数的分布列及期望,并求该商家拒收这批产品的概率.21.本题考察相互独立事件、互斥事件等的概率计算,考察随机事件的分布列,数学期

31、望等,考察运用所学知识与方法解决实际问题的能力。解:()记“厂家任取4件产品检验,其中至少有1件是合格品”为事件A 用对立事件A来算,有()可能的取值为 ,记“商家任取2件产品检验,都合格”为事件B,则商家拒收这批产品的概率所以商家拒收这批产品的概率为22.(2007天津文)(本小题满分12分)已知甲盒内有大小相同的3个红球和4个黑球,乙盒内有大小相同的5个红球和4个黑球现从甲、乙两个盒内各任取2个球()求取出的4个球均为红球的概率;()求取出的4个球中恰有1个红球的概率;22.本小题主要考查互斥事件、相互独立事件等概率的基础知识,考查运用概率知识解决实际问题的能力满分12分()解:设“从甲盒

32、内取出的2个球均为红球”为事件,“从乙盒内取出的2个球均为红球”为事件由于事件相互独立,且,故取出的4个球均为红球的概率是()解:设“从甲盒内取出的2个球中,1个是红球,1个是黑球;从乙盒内取出的2个红球为黑球”为事件,“从甲盒内取出的2个球均为黑球;从乙盒内取出的2个球中,1个是红球,1个是黑球”为事件由于事件互斥,且,故取出的4个红球中恰有4个红球的概率为23.(2007天津理)(本小题满分12分)已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球现从甲、乙两个盒内各任取2个球()求取出的4个球均为黑球的概率;()求取出的4个球中恰有1个红球的概率;()设为取出的4个球中红球的个数,求的分布列和数学期望23.本小题主要考查互斥事件、相互独立事件、离散型随机变量的分布列和数学期望等基础知识,考查运用概率知识解决实际问题的能力满分12分()解:设“从甲盒内取出的2个球均为黑球”为事件,“从乙盒内取出的2个球均为黑球”为事件由于事件相互独立,且,故取出的4个球均为黑球的概率为()解:设“从甲盒内取出的2个球均为黑球;从乙盒内

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论