二元一次方程公式_第1页
二元一次方程公式_第2页
二元一次方程公式_第3页
二元一次方程公式_第4页
二元一次方程公式_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、二元一次方程公式作者:日期:二元一次方程组(一)一、重点、难点1?、二元一次方程及其解集(1) 含有两个未知数,并且未知数项的次数是1的整式方程叫 二元一次方程.(2) 二元一次方程的解是无数多组.2?、二元一次方程组和它的解(1)含有两个相同未知量的两个二元一次方程合在一起,就组成了一个二元一次方程组.2( ?)使二元一次方程组的两个方程左、右两边的值都相等的两个未知数的值叫做二元一次方程组的 解.?3、二元一次方程组的解法(1)代入消元法:把其中的一个方程的某一个未知数用含有另 一个未知数的代数式表示,然后代入另一个方程,就可以消去一个 未知数.2(?)加减消元法:先利用等式的性质,用适当

2、的数同乘以需要变形的方程的两边,使两个方程中某个未知数的系数的绝 对值相等,然后把两个方程的两边分别相加或相减,就可以消去这个未知数.4、三元一次方程组及其解法(1)含有三个未知数,每个方程的未知数的次数都是1,并且是由 三个方程组成的方程组叫做三元一次方程组 .?( 2)解三元一次方程组的基本思想是用消元的方法把 “三元”转化为“二元”(将 未知问题转化为已知问题,再将“二元”转化为“一元”).二、例题分析:?例1:在方程2x 3y= 6中,1)用含x的代数式表示y.2)用含y的代数式表示x.答案:1)y = x- 2 ; 2)x = 3+ y ? 例 2:已知 x+ y = 0, 且 |x

3、| = 2,求 y+2 的值.? 解:v| x| = 2 ? 二 x=2,或 x =- 2?又 T x+y=O.y = -2,或 y=2故y + 2= 0,或 y+2=4例3:已知方程组 的解是,求a与b的值? 分析:方程组 的解就是适合原方程组,所以将代入方程可以得到关于a, b的新 的方程。解:因为方程组 ? 的解是所以?( 1) X 2 得 2a4 =2b(3)(3) -(2 )得-5 = 2 b-2 ? z.b =-将 b 二-代入(1)得 a = ?.?答案:a= , b= ?例4:方程x+ 3 y= 1 0在正整数范围内的解有 组,它们是 _。? 答案:3;? 例5:把方程 3(x

4、+5)=5( y1) +3化成二元一次方程的一般形式为.答案:3x -5y+1 7= 0例 6:已知关于 x ,y 的方程(k2 1) x2+(k+1) x +(k- 7) y=k+2。 ? 当k =时,方程为一元一次方程,当k=_ _时,方程为二元一次方程。? 分析:题目中没有规定未知数,所以x,y都可以。因此注意分两种可能。解:第一问丁关于 x, y 的方程(k2-1 ) x 2+(k+1) x +(k 7)y =k+ 2为一元一次方程,(1)或(2)? 方程组(1)的解为k=-1 , 无解? 当k=1时原方程为一元一次方程第二问 丁关于 x, y 的方程(k 2-1)x2+ (k +1)

5、 x+(k- 7 )y = k+ 2为二元一次方程解得k = 1当k=1时原方程为二元一次方程例7:二元一次方程组的解中x与y互为相反数,求a的值解:丁原方程组的解中x与y互为相反数? x= y(1)将(1)代入原方程组,得- a=二元一次方程组(二)? 一、对应用题的观察和分析利用二元一次方程组解有关的应用题时,对应用题进行观察和分 析,要着重注意如下三点:?(1)题中有哪几个未知数(包括明显的未知数和隐含的未知数)? (2)题中的未知数与已知内容之间有哪几个相等关系(包括明显的相等关系和隐含的相等关系)? 题中有几个未知数,一般就要找出几个相等关系.(3 )设立哪几个未知数,利用哪几个相等

6、关系,可以较方便地把 其余未知数用所设未知数的代数式表示出来?(利用剩下的等量关系列方程组.)二、常见几类应用题及其基本数量关系明确各类应用题中的基本数量关系,是正确列出方程的关键.常遇到的几类应用题及其基本关系如下: 1?.行程问题:基本关系式为:速度x时间二距离2.工程问题:基本关系式为:工作效率x工作时间二工作总量?计划数量x超额百分数 二超额数量计划数量X实际完成百分数 二实际数量3 ?.百分比浓度问题: 基本关系式为:溶液x百分比浓度二溶质4 .混合物问题:基本关系式为:?各种混合物重量之和二混合后的总重量混合前纯物重量二混合后纯物重量混合物重量X含纯物的百分数=纯物的重量5 ?.航

7、行问题:基本关系式为:静水速度+ 水速二顺水速度 ? 静水速度-水速二逆水速度 ?6.数字问题要注意各数位上的数字与数位的关系.7倍比问题,要注意一些基本关系术语,女口:倍、分、大、小等.?三、例题精析? 如何分析应用题:例1.某单位外出参观.若每辆汽车坐45人,那么15人没有座 位;若每辆汽车坐6 0人,则恰好空出一辆汽车,问共需几辆汽车, 该单位有多少人?思考如下:(1) 题目中的已知条件是什么?(2) “有人没有座位”是指什么意思? “有空座位”是指什么意思? 3.基于上述分析,那么已知条件“每辆车坐4 5人,15人没有座位”可理解成什么? “每辆车坐6 0人,恰好空出一辆车”又可理解成

8、什么?解:设该单位共有x辆车,y个人.依题意,得 ? 解这个方程 组,得 ?答:该单位共有5辆车,24 0人.? 例2 .汽车从甲地到乙地,若每小时行驶 45千米,就要延误 小时到达;若 每小时行驶5 0千米,就可以提前 小时到达。求甲、乙两地间的 距离及原计划行驶的时间。思考问题:(1 )路程、速度、时间三者关系是什么?(2)本题中的“延误”和“提前”都是以什么为标准的 ? ?(3 )基于上述分析,那么已知条件“汽车每小时行使4 5千米,则要延误 小时到 达目的地”可理解成什么?已知条件“若每小时行驶50千米,就可 以提前 小时到达目的地”又可理解成什么?解:设甲、乙两地的距离为x千米,原计

9、划行驶时间为y小时. 依题意,得解这个方程组,得? 答:甲、乙两地间的距离是450千米,原计划行使时间为 小时。? 例3 .甲、乙两人在周长是 400米的环形跑道上散步若两人从同地同时背道而行,则经过2分钟 就相遇.若两人从同地同时同向而行 ,则经过20分钟后两人相 遇.已知甲的速度较快,求二人散步时的速度.(只列方程,不求出) 分析:这个问题是环形线上的相遇、追及问题.其中有两个未知 数:甲、乙二人各自的速度.有两个相等关系,即?( 1)背向而行:两次相遇间甲、乙的行程之和 =4 00米;?(2)同向而行:两次相遇间甲、乙的行程之差=4 0 0米.? 解:设甲人速度为 每分钟x米,乙人速度为

10、每分钟行走y米.依题意,得四、如何设未知数 ?列方程解应用题的第一步是设未知数,设未知数的方法很多,有时可直接设所求量为未知数,有时应 间接地设未知数,还有的时候需要增设辅助未知数.那么,如何巧设未知数,以达到迅速解题的目的呢? 直接设所求量为未知数? 例1. A,B两地相距 20千米.甲、乙两人分别从 A,B两 地同时相向而行,两小时后在途中相遇,然后甲返回 A地,乙仍继 续前进,当甲回到A地时,乙离A地还有2千米.求甲、乙的速度.分析:这个问题是直线行驶中的相遇、 追及问题.其中设两个未 知数:甲、乙各自的速度,有两个相等关系.? 解:设甲人的速 度是每小时行x千米,乙人的速度是每小时 y

11、千米.依题意,得 ? 解这个方程组,得? 合理选择,间接设元许多同学在解应用题时只考虑题目要求什么就设什么为未知 数.这种方法有时很难寻找已知量与未知量之间的相等关系 .因此, 我们应根据题目条件选择与要求的未知量有关的某个量为未知数,以便找出符合题意的相等关系,从而达到解题的目的.? 例2.从夏令营到学校,先下山然后走平路,某同学先骑自行车以每 小时12千米的速度下山,而以每小时9千米的速度通过平路,到达 学校共用55分钟,他回来的时候以每小时 8千米的速度通过平路 而以每小时4千米的速度上山回到夏令营用了1小时。从夏令营到学校有多少千米? ? 分析:根据题设条件,若设山路长为未知 数x,则

12、由来回的平路长相等得方程:9 ; ?同样可设平路长为未知数,由来回山路长相等得方程1 2还可设山路长和平路长分别为 x千米,y千米,由来回的时间关 系建立二元一次方程组? 或设下山和上山的时间分别为 x小时,y小时.由来回山路长和平路长分别相等得到二元一次方程组 ?设而不求,巧用辅助量当应用题中涉及的量较多,各个量之间的关系又不明显时,可适当地增设辅助未知数目的不是要具体地求出它们的值,而是以此 作桥梁,沟通各个数量之间的关系,为列方程(组)创造条件.在解 题过程中需将辅助未知数消去,以便求出所需未知数的值.例1. 一客轮逆水行驶,船上一乘客掉了一件物品,浮在水面上, 等乘客发现后,轮船立即掉头去追,已知轮船从

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论