内蒙古准格尔旗高中数学 第一章 算法初步 1.3 算法案例课件1 新人教B版必修3_第1页
内蒙古准格尔旗高中数学 第一章 算法初步 1.3 算法案例课件1 新人教B版必修3_第2页
内蒙古准格尔旗高中数学 第一章 算法初步 1.3 算法案例课件1 新人教B版必修3_第3页
内蒙古准格尔旗高中数学 第一章 算法初步 1.3 算法案例课件1 新人教B版必修3_第4页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第一章第一章 算法初步算法初步 1.3 算法案例算法案例3 59 15问题问题1:在小学,我们已经学过求最大公约数的知识,你能求:在小学,我们已经学过求最大公约数的知识,你能求出出18与与30的最大公约数吗?的最大公约数吗?创设情景,揭示课题创设情景,揭示课题18 302318和和30的最大公约数是的最大公约数是23=6.先用两个数公有的先用两个数公有的质因数质因数连续去除连续去除,一直除到所得的商是互质一直除到所得的商是互质数为止数为止,然后把所有的除数连乘起来然后把所有的除数连乘起来.案例案例1 辗转相除法与更相减损术辗转相除法与更相减损术创设情景,揭示课题创设情景,揭示课题问题问题2:我

2、们都是利用找公约数的方法来求我们都是利用找公约数的方法来求最大公约数,如果两个数比较大而且根据我最大公约数,如果两个数比较大而且根据我们的观察又不能得到一些公约数,我们又应们的观察又不能得到一些公约数,我们又应该怎样求它们的最大公约数?比如求该怎样求它们的最大公约数?比如求8251与与6105的最大公约数的最大公约数? 研探新知研探新知1.辗转相除法辗转相除法:例例1 求两个正数求两个正数8251和和6105的最大公约数。的最大公约数。分析:分析:8251与与6105两数都比较大,而且没有明显的公约两数都比较大,而且没有明显的公约数,如能把它们都变小一点,根据已有的知识即可求出最大公数,如能把

3、它们都变小一点,根据已有的知识即可求出最大公约数约数.解:解:8251610512146显然显然8251与与6105的最大公约数也必是的最大公约数也必是2146的约数,同样的约数,同样6105与与2146的公约数也必是的公约数也必是8251的约数,所以的约数,所以8251与与6105的最的最大公约数也是大公约数也是6105与与2146的最大公约数。的最大公约数。1.辗转相除法辗转相除法:例例1 求两个正数求两个正数8251和和6105的最大公约数。的最大公约数。解:解:8251610512146;6105214621813;214618131333333148237;

4、1483740.则则37为为8251与与6105的最大公约数。的最大公约数。以上我们求最大公约数的方法就是辗转相除法。也叫欧以上我们求最大公约数的方法就是辗转相除法。也叫欧几里德算法,它是由欧几里德在公元前几里德算法,它是由欧几里德在公元前300年左右首先提出的。年左右首先提出的。 第一步第一步,给定两个正数给定两个正数m,n 第二步第二步,计算计算m除以除以n所得到余数所得到余数r 第三步第三步,m=n,n=r 第四步第四步,若若r=0,则则m,n的最大公约数等于的最大公约数等于m;否则返回第二步否则返回第二步辗转相除法求最大公约数算法:辗转相除法求最大公约数算法:思考思考 :需不需要比较:

5、需不需要比较m,n的大小的大小不需要不需要否否开始开始 输入两个正数输入两个正数m,nr=m MOD nr=0?输出输出m结束结束m=nn=r是是程序框图2.更相减损术更相减损术:我国早期也有解决求最大公约数问题的算法,就是更相我国早期也有解决求最大公约数问题的算法,就是更相减损术。减损术。更相减损术求最大公约数的步骤如下:可半者半之,不更相减损术求最大公约数的步骤如下:可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也,可半者,副置分母、子之数,以少减多,更相减损,求其等也,以等数约之。以等数约之。翻译出来为:第一步:任意给出两个正数;判断它们是否都翻译出来为:第一步:任意

6、给出两个正数;判断它们是否都是偶数。若是,用是偶数。若是,用2约简;若不是,执行第二步。约简;若不是,执行第二步。第二步:以较大的数减去较小的数,接着把较小的数与所得第二步:以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小数。继续这个操作,直到所得的数相等为的差比较,并以大数减小数。继续这个操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数。止,则这个数(等数)就是所求的最大公约数。例例2 用更相减损术求用更相减损术求98与与63的最大公约数的最大公约数.解:由于解:由于63不是偶数,把不是偶数,把98和和63以大数减小数,并辗以大数减小数,并辗转相减,转相减,

7、 即:即:986335; 633528; 35287; 28721; 21714; 1477.所以,所以,98与与63的最大公约数是的最大公约数是7。练习练习2:用更相减损术求两个正数:用更相减损术求两个正数84与与72的最大公约数。的最大公约数。 (12)辗转相除法与更相减损术的比较辗转相除法与更相减损术的比较: (1)都是求最大公约数的方法,计算上辗转相除法以除)都是求最大公约数的方法,计算上辗转相除法以除法为主,更相减损术以减法为主法为主,更相减损术以减法为主;计算次数上辗转相除法计算次计算次数上辗转相除法计算次数相对较少,特别当两个数字大小区别较大时计算次数的区别数相对较少,特别当两个

8、数字大小区别较大时计算次数的区别较明显。较明显。(2)从结果体现形式来看,辗转相除法体现结果是以相)从结果体现形式来看,辗转相除法体现结果是以相除余数为除余数为0则得到,而更相减损术则以减数与差相等而得到则得到,而更相减损术则以减数与差相等而得到.教学设计教学设计问题问题1设计求多项式设计求多项式f(x)=2x5-5x4-4x3+3x2-6x+7当当x=5时的值的算时的值的算法法,并写出程序并写出程序.x=5f=2x5-5x4-4x3+3x2-6x+7PRINT fEND程序程序点评点评:上述算法一共做了上述算法一共做了15次乘法运算次乘法运算,5次加法运算次加法运算.优点是简单优点是简单,易

9、懂易懂;缺点是不通用缺点是不通用,不能解决任意多项式求值问题不能解决任意多项式求值问题,而且计算效率而且计算效率不高不高.n次多项式至多次多项式至多n(n+1)/2次乘法运算和次乘法运算和n次加法运算次加法运算案例案例2 秦九韶算法秦九韶算法 这析计算上述多项式的值这析计算上述多项式的值,一共需要一共需要9次乘法运算次乘法运算,5次加次加法运算法运算.问题问题2有没有更高效的算法有没有更高效的算法?分析分析:计算计算x的幂时的幂时,可以利用前面的计算结果可以利用前面的计算结果,以减少计算以减少计算量量,即先计算即先计算x2,然后依次计算然后依次计算222,(),()xx xxxxxxx的值的值

10、.第二种做法与第一种做法相比第二种做法与第一种做法相比,乘法的运算次数减少了乘法的运算次数减少了,因而能提高运算效率因而能提高运算效率.而且对于计算机来说而且对于计算机来说,做一次乘法所需的做一次乘法所需的运算时间比做一次加法要长得多运算时间比做一次加法要长得多,因此第二种做法能更快地得因此第二种做法能更快地得到结果到结果.问题问题3能否探索更好的算法能否探索更好的算法,来解决任意多项式的求值问题来解决任意多项式的求值问题?f(x)=2x5-5x4-4x3+3x2-6x+7=(2x4-5x3-4x2+3x-6)x+7=(2x3-5x2-4x+3)x-6)x+7=(2x2-5x-4)x+3)x-

11、6)x+7=(2x-5)x-4)x+3)x-6)x+7v0=2v1=v0 x-5=25-5=5v2=v1x-4=55-4=21v3=v2x+3=215+3=108v4=v3x-6=1085-6=534v5=v4x+7=5345+7=2677所以所以,当当x=5时时,多项式的值是多项式的值是2677.这种求多项式值的方法就叫这种求多项式值的方法就叫秦九韶算法秦九韶算法.变为求几个一次式的值变为求几个一次式的值几个乘法几个乘法几个加法?几个加法?秦九韶秦九韶数书九章数书九章.2 -5 0 -4 3 -6 0 x=5105252512512160560830403034所以所以,当当x=5时时,多项

12、式的值是多项式的值是15170.练习练习:用秦九韶算法求多项式用秦九韶算法求多项式 f(x)=2x6-5x5-4x3+3x2-6x当当x=5时的值时的值.解解:原多项式先化为原多项式先化为: f(x)=2x6-5x5 +0 x4-4x3+3x2-6x+0列表列表21517015170 注意注意:n次多项式有次多项式有n+1项项,因此缺少哪一项应将其系数补因此缺少哪一项应将其系数补0.f(x)=anxn+an-1xn-1+an-2xn-2+a1x+a0.我们可以改写成如下形式我们可以改写成如下形式:f(x)=(anx+an-1)x+an-2)x+a1)x+a0.求多项式的值时求多项式的值时,首先

13、计算最内层括号内一次多项式的值首先计算最内层括号内一次多项式的值,即即 v1=anx+an-1,然后由内向外逐层计算一次多项式的值然后由内向外逐层计算一次多项式的值,即即一般地一般地,对于一个对于一个n次多项式次多项式v2=v1x+an-2,v3=v2x+an-3, ,vn=vn-1x+a0.这样这样,求求n次多项式次多项式f(x)的值就转化为求的值就转化为求n个一次多项式的个一次多项式的值值.这种算法称为这种算法称为秦九韶算法秦九韶算法.点评点评:秦九韶算法是求一元多项式的值的一种方法秦九韶算法是求一元多项式的值的一种方法.它的特点是它的特点是:把求一个把求一个n次多项式的值转化为求次多项式

14、的值转化为求n个一次个一次多项式的值多项式的值,通过这种转化通过这种转化,把运算的次数由至多把运算的次数由至多n(n+1)/2次乘法次乘法运算和运算和n次加法运算次加法运算,减少为减少为n次乘法运算和次乘法运算和n次加法运算次加法运算,大大提大大提高了运算效率高了运算效率.v1=anx+an-1,v2=v1x+an-2,v3=v2x+an-3, ,vn=vn-1x+a0.观察上述秦九韶算法中的观察上述秦九韶算法中的n个一次式个一次式,可见可见vk的计算要用的计算要用到到vk-1的值的值.若令若令v0=an,得得v0=an,vK=vK-1x+an-k(k=1,2,n)这是一个在秦九韶算法中反复执

15、行的步骤这是一个在秦九韶算法中反复执行的步骤,因此可用因此可用循环结构来实现循环结构来实现. 第一步第一步,输入多项式次数输入多项式次数n、最高次项的系数、最高次项的系数an和和x的值的值 第二步第二步,将将v的值初始化为的值初始化为an,将,将i的值初始化为的值初始化为n-1 第三步第三步,输入输入i次项的系数次项的系数ai 第四步第四步,v=vx+ai,i=i-1 第五步第五步,若若i=0,则返回第三步,否则输出则返回第三步,否则输出v算法分析:算法分析:否否程序框图程序框图开始开始输入输入n,an,x的值的值输入输入aii=0?i=n-1v=anv=vx+aii=i-1输出输出v结束结束

16、是是问题问题1我们常见的数字都是十进制的我们常见的数字都是十进制的,但是并不是生活但是并不是生活中的每一种数字都是十进制的中的每一种数字都是十进制的.比如时间和角度的单位用六十比如时间和角度的单位用六十进位制进位制,电子计算机用的是二进制电子计算机用的是二进制.那么什么是进位制那么什么是进位制?不同的不同的进位制之间又有什么联系呢进位制之间又有什么联系呢?进位制是人们为了计数和运算的方便而约定的一种记进位制是人们为了计数和运算的方便而约定的一种记数系统,约定满二进一数系统,约定满二进一,就是二进制就是二进制;满十进一满十进一,就是十进制就是十进制;满满十六进一十六进一,就是十六进制就是十六进制

17、;等等等等. “满几进一满几进一”,就是几进制就是几进制,几进制的几进制的基数基数就是几就是几.可使用数字符号的个数称为基数可使用数字符号的个数称为基数.基数都是大于基数都是大于1的整的整数数. 案例案例3 进位制进位制如二进制可使用的数字有如二进制可使用的数字有0和和1,基数是基数是2; 十进制可使用的数字有十进制可使用的数字有0,1,2,8,9等十个数字等十个数字,基数是基数是10; 十六进制可使用的数字或符号有十六进制可使用的数字或符号有09等等10个数字以及个数字以及AF等等6个字母个字母(规定字母规定字母AF对应对应1015),十六进制的基数是十六进制的基数是16.注意注意:为了区分

18、不同的进位制为了区分不同的进位制,常在数字的右下脚标明常在数字的右下脚标明基数基数,. 如如111001(2)表示二进制数表示二进制数,34(5)表示表示5进制数进制数.十进制数一般不标注基数十进制数一般不标注基数.问题问题2十进制数十进制数3721中的中的3表示表示3个千个千,7表示表示7个百个百,2表示表示2个个十十,1表示表示1个一个一,从而它可以写成下面的形式从而它可以写成下面的形式:3721=3103+7102+2101+1100.想一想二进制数想一想二进制数1011(2)可以类似的写成什么形式可以类似的写成什么形式?1011(2)=123+022+121+120.同理同理:3421

19、(5)=353+452+251+150.C7A16(16)=12164+7163+10162 +1161+6160.一般地一般地,若若k是一个大于是一个大于1的整数的整数,那么以那么以k为基数的为基数的k进制进制数可以表示为一串数字连写在一起的形式数可以表示为一串数字连写在一起的形式anan-1a1a0(k) (0ank,0an-1,a1,a0k)意思是意思是:(1)第一个数字第一个数字an不能等于不能等于0;(2)每一个数字每一个数字an,an-1,a1,a0都须小于都须小于k.k进制的数也可以表示成不同位上数字与基数进制的数也可以表示成不同位上数字与基数k的幂的的幂的乘积之和的形式乘积之和

20、的形式,即即anan-1a1a0(k)=ankn+an-1kn-1 +a1k1+a0k0 .注意这是一个注意这是一个n+1位数位数.问题问题3二进制只用二进制只用0和和1两个数字两个数字,这正好与电路的通和这正好与电路的通和断两种状态相对应断两种状态相对应,因此因此计算机内部都使用二进制计算机内部都使用二进制.计算机在计算机在进行数的运算时进行数的运算时,先把接受到的数转化成二进制数进行运算先把接受到的数转化成二进制数进行运算,再把运算结果转化为十进制数输出再把运算结果转化为十进制数输出.那么二进制数与十进制数之间是如何转化的呢那么二进制数与十进制数之间是如何转化的呢?例例3:把二进制数把二进

21、制数110011(2)化为十进制数化为十进制数.分析分析:先把二进制数写成不同位上数字与先把二进制数写成不同位上数字与2的幂的乘积之的幂的乘积之和的形式和的形式,再按照十进制数的运算规则计算出结果再按照十进制数的运算规则计算出结果.解解:110011(2) =125+124+023+022+121+120 =132+116+12+1=51. k进制数转化为十进制数的方法进制数转化为十进制数的方法先把先把k进制的数表示成不同位上数字与基数进制的数表示成不同位上数字与基数k的幂的乘的幂的乘积之和的形式积之和的形式,即即anan-1a1a0(k)=ankn+an-1kn-1+a1k1+a0k0 .再按照十进制数的运算规则计算出结果再按照十进制数的运算规则计算出结果.例例4:把把89化为二进制的数化为二进制的数.分析分析:把把89化为二进制的数化为二进制的数,需想办法将需想办法将89先写

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论