2019届高考数学一轮复习 第八章 立体几何 8.5 直线、平面垂直的判定与性质课件 文 新人教B版_第1页
2019届高考数学一轮复习 第八章 立体几何 8.5 直线、平面垂直的判定与性质课件 文 新人教B版_第2页
2019届高考数学一轮复习 第八章 立体几何 8.5 直线、平面垂直的判定与性质课件 文 新人教B版_第3页
2019届高考数学一轮复习 第八章 立体几何 8.5 直线、平面垂直的判定与性质课件 文 新人教B版_第4页
2019届高考数学一轮复习 第八章 立体几何 8.5 直线、平面垂直的判定与性质课件 文 新人教B版_第5页
已阅读5页,还剩40页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、18 8. .5 5直线、平面垂直的判定与性质直线、平面垂直的判定与性质-2-知识梳理双基自测231自测点评1.两条直线互相垂直:如果两条直线相交于一点或相交于一点,并且交角为,则称这两条直线互相垂直.经过平移后 直角 -3-知识梳理双基自测自测点评2312.直线与平面垂直(1)直线与平面垂直的定义:如果一条直线和一个平面相交于点O,并且和这个平面内过交点(O)的直线都垂直,就说这条直线和这个平面互相垂直.任何 -4-知识梳理双基自测自测点评231(2)直线与平面垂直的判定定理及其推论: 两条相交直线 a b ab=O la lb 垂直于 ab a a b -5-知识梳理双基自测自测点评231

2、3.平面与平面垂直(1)平面与平面垂直的定义:如果两个相交平面的与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线,就称这两个平面互相垂直.交线 互相垂直 -6-知识梳理双基自测自测点评231(2)平面与平面垂直的判定定理及性质定理: 垂线 l l 交线 l =a la -7-2知识梳理双基自测3415自测点评1.下列结论正确的打“”,错误的打“”.(1)已知直线a,b,c;若ab,bc,则ac.()(2)直线l与平面内的无数条直线都垂直,则l.()(3)设m,n是两条不同的直线,是一个平面,若mn,m,则n.()(4)若两平面垂直,则其中一个平面内的任意一条直线垂直于另一个平面.(

3、)(5)若平面内的一条直线垂直于平面内的无数条直线,则.() 答案 答案关闭(1)(2)(3)(4)(5)-8-知识梳理双基自测自测点评234152.如图,O为正方体ABCD-A1B1C1D1的底面ABCD的中心,则下列直线中与B1O垂直的是()A.A1DB.AA1C.A1D1D.A1C1 答案解析解析关闭由题易知,A1C1平面BB1D1D,又OB1平面DD1B1B,所以A1C1B1O. 答案解析关闭D-9-知识梳理双基自测自测点评234153.(2017湖南岳阳一模)已知,表示两个不同的平面,m为平面内的一条直线,则“m ”是“ ”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既

4、不充分也不必要条件 答案解析解析关闭根据面面垂直的判定定理得,若m,则成立,即充分性成立,若,则m不一定成立,即必要性不成立,故“m”是“”的充分不必要条件,故选A. 答案解析关闭A-10-知识梳理双基自测自测点评234154. P为ABC所在平面外一点,O为P在平面ABC内的射影.(1)若P到ABC三边距离相等,且O在ABC的内部,则O是ABC的心;(2)若PABC,PBAC,则O是ABC的心;(3)若PA,PB,PC与底面所成的角相等,则O是ABC的心. 答案解析解析关闭 (1)P到ABC三边距离相等,且O在ABC的内部,可知O到ABC三边距离相等,即O是ABC的内心;(2)由PO平面AB

5、C且BC平面ABC,得POBC,又PABC,PO与PA是平面POA内两条相交直线,所以BC平面POA,从而BCAO.同理ACBO,所以O是ABC的垂心;(3)由PA,PB,PC与底面所成的角相等,易得RtPOA RtPOB RtPOC,从而OA=OB=OC,所以O是ABC的外心. 答案解析关闭(1)内(2)垂(3)外-11-知识梳理双基自测自测点评234155.如图,PA垂直于O所在平面,AB是O的直径,C是O上一点,AEPC,AFPB,给出下列结论:AEBC;EFPB;AFBC;AE平面PBC,其中真命题的序号是. 答案解析解析关闭因为AE平面PAC,BCAC,BCPA,所以AEBC,故正确

6、;因为AEPC,AEBC,PB平面PBC,所以AEPB,又AFPB,EF平面AEF,所以EFPB,故正确;因为AFPB,若AFBC,则AF平面PBC,则AFAE,与已知矛盾,故错误;由可知正确. 答案解析关闭-12-知识梳理双基自测自测点评1.在空间中垂直于同一直线的两条直线不一定平行,还有可能异面、相交.2.使用线面垂直的定义和线面垂直的判定定理,不要误解为“如果一条直线垂直于平面内的无数条直线,就垂直于这个平面”.3.判断线面关系时最容易漏掉线在面内的情况.-13-考点1考点2考点3例1如图,在三棱台ABC-DEF中,平面BCFE平面ABC,ACB=90,BE=EF=FC=1,BC=2,A

7、C=3.(1)求证:BF平面ACFD;(2)求直线BD与平面ACFD所成角的余弦值.思考证明线面垂直的常用方法有哪些? -14-考点1考点2考点3(1)证明 延长AD,BE,CF相交于一点K,如图所示.因为平面BCFE平面ABC,且ACBC,所以AC平面BCK,因此BFAC.又因为EFBC,BE=EF=FC=1,BC=2,所以BCK为等边三角形,且F为CK的中点,则BFCK.所以BF平面ACFD.-15-考点1考点2考点3-16-考点1考点2考点3解题心得1.证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中的一条垂直于这个平面,则另一条也垂直

8、于这个平面).2.解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.-17-考点1考点2考点3对点训练对点训练1(2017山东潍坊一模)在如图所示的空间几何体中,EC平面ABCD,四边形ABCD是菱形,CEBF,且CE=2BF,G,H,P分别为AF,DE,AE的中点.求证:(1)GH平面BCEF;(2)FP平面ACE.-18-考点1考点2考点3证明: (1)取EC中点M,FB中点N,

9、连接HM,GN.则HM DC,GN AB,由题意可知ABCD,AB=CD,HMGN,四边形HMNG是平行四边形,GHMN,GH平面BCEF,MN平面BCEF,GH平面BCEF.(2)连接BD,与AC交于O,连接OP,则OP EC,又ECBF,EC=2BF,OPBF,四边形PFBO是平行四边形,PFBO,BOAC,BOEC,ACEC=C,BO平面ACE,FP平面ACE.-19-考点1考点2考点3例2如图,四边形ABCD为菱形,G为AC与BD的交点,BE平面ABCD.(1)证明:平面AEC平面BED;(2)若ABC=120,AEEC,三棱锥E-ACD的体积为 ,求该三棱锥的侧面积.思考证明面面垂直

10、的常用方法有哪些?-20-考点1考点2考点3 (1)证明 因为四边形ABCD为菱形,所以ACBD.因为BE平面ABCD,所以ACBE.故AC平面BED.又AC平面AEC,所以平面AEC平面BED.-21-考点1考点2考点3-22-考点1考点2考点3解题心得1.两个平面互相垂直是两个平面相交的特殊情形.2.由平面和平面垂直的判定定理可知,要证明平面与平面垂直,可转化为从现有直线中寻找平面的垂线,即证明线面垂直.3.平面和平面垂直的判定定理的两个条件:l,l,缺一不可.-23-考点1考点2考点3对点训练对点训练2(2017河南洛阳三模)在四棱柱ABCD-A1B1C1D1中,四边形ABCD为平行四边

11、形,AA1平面ABCD,BAD=60,AB=2,BC=1,AA1= ,E为A1B1的中点.(1)求证:平面A1BD平面A1AD;(2)求多面体A1E-ABCD的体积.-24-考点1考点2考点3(1)证明: AB=2,AD=BC=1,BAD=60,BD2+AD2=AB2,BDAD,AA1平面ABCD,BD平面ABCD,BDAA1,又AA1AD=A,AA1平面A1AD,AD平面A1AD,BD平面A1AD,又BD平面A1BD,平面A1BD平面A1AD.-25-考点1考点2考点3-26-考点1考点2考点3考向一平行与垂直关系的证明例3如图,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点

12、,点F在侧棱B1B上,且B1DA1F,A1C1A1B1.求证:(1)直线DE平面A1C1F;(2)平面B1DE平面A1C1F.思考处理平行与垂直关系的综合问题的主要数学思想是什么?-27-考点1考点2考点3证明 (1)在直三棱柱ABC-A1B1C1中,A1C1AC.在ABC中,因为D,E分别为AB,BC的中点,所以DEAC,于是DEA1C1.又因为DE平面A1C1F,A1C1平面A1C1F,所以直线DE平面A1C1F.-28-考点1考点2考点3(2)在直三棱柱ABC-A1B1C1中,A1A平面A1B1C1.因为A1C1平面A1B1C1,所以A1AA1C1.又因为A1C1A1B1,A1A平面AB

13、B1A1,A1B1平面ABB1A1,A1AA1B1=A1,所以A1C1平面ABB1A1.因为B1D平面ABB1A1,所以A1C1B1D.又因为B1DA1F,A1C1平面A1C1F,A1F平面A1C1F,A1C1A1F=A1,所以B1D平面A1C1F.因为直线B1D平面B1DE,所以平面B1DE平面A1C1F.-29-考点1考点2考点3考向二探索性问题中的平行与垂直关系例4如图,在四棱锥P-ABCD中,底面ABCD是菱形,DAB=45,PD平面ABCD,PD=AD=1,点E为AB上一点,且 点F为PD中点.(1)若k= ,求证:直线AF平面PEC;(2)是否存在一个常数k,使得平面PED平面PA

14、B?若存在,求出k的值;若不存在,请说明理由.思考探索性问题的一般处理方法是什么?-30-考点1考点2考点3-31-考点1考点2考点3-32-考点1考点2考点3考向三折叠问题中的平行与垂直关系例5如图,菱形ABCD的对角线AC与BD交于点O,点E,F分别在AD,CD上,AE=CF,EF交BD于点H.将DEF沿EF折到DEF的位置.(1)证明:ACHD;思考折叠问题的处理关键是什么?-33-考点1考点2考点3-34-考点1考点2考点3-35-考点1考点2考点3解题心得平行与垂直的综合应用问题的主要数学思想和处理策略:(1)处理平行与垂直的综合问题的主要数学思想是转化,要熟练掌握线线、线面、面面之

15、间的平行与垂直的转化.(2)探索性问题一般是先根据条件猜测点的位置再给出证明,探索点的存在问题,点多为中点或三等分点中的某一个,也可以根据相似的知识找点.(3)折叠问题中的平行与垂直关系的处理关键是结合图形弄清折叠前后变与不变的数量关系,尤其是隐含着的垂直关系.-36-考点1考点2考点3对点训练对点训练3(2017北京房山区一模)如图1,在直角梯形ABCD中,ABCD,ABBC,AB=2CD,DEAB,沿DE将AED折起到A1ED的位置,连接A1B,A1C,M,N分别为A1C,BE的中点,如图2.(1)求证:DEA1B.(2)求证:MN平面A1ED.(3)在棱A1B上是否存在一点G,使得EG丄

16、平面A1BC?若存在,求出图1 图2 -37-考点1考点2考点3(1)证明: 在直角梯形ABCD中,ABCD,ABBC,AB=2CD,DEAB,沿DE将AED折起到A1ED的位置,DEA1E,DEBE,A1EBE=E,DE平面A1BE,A1B平面A1BE,DEA1B.(2)证明: 取CD中点F,连接NF,MF,M,N分别为A1C,BE的中点,MFA1D,NFDE,又DEA1D=D,NFMF=F,DE平面A1DE,A1D平面A1DE,NF平面MNF,MF平面MNF,平面A1DE平面MNF.MN平面A1ED.-38-考点1考点2考点3(3)解: 取A1B的中点G,连接EG,A1E=BE,EGA1B

17、,由(1)知DE平面A1BE,DEBC,BC平面A1BE,EGBC,又A1BBC=B,EG平面A1BC.-39-考点1考点2考点31.转化思想:垂直关系的转化2.在证明两平面垂直时一般先从现有的直线中寻找平面的垂线,若这样的直线图中不存在,则可通过作辅助线来解决.如有平面垂直时,一般要用性质定理,在一个平面内作交线的垂线,使之转化为线面垂直,然后进一步转化为线线垂直.故熟练掌握“线线垂直”“面面垂直”间的转化条件是解决这类问题的关键.-40-考点1考点2考点31.在解决直线与平面垂直的问题过程中,要注意直线与平面垂直的定义、判定定理和性质定理的联合交替使用,即注意线线垂直和线面垂直的互相转化.

18、2.面面垂直的性质定理是作辅助线的一个重要依据.我们要作一个平面的一条垂线,通常是先找这个平面的一个垂面,在这个垂面中,作交线的垂线即可.-41-审题答题指导立体几何问题的审题技巧与解题规范在高考数学试题中,问题的条件以图形的形式或将条件隐含在图形之中给出的题目较多,因此在审题时,要善于观察图形,洞悉图形所隐含的特殊的关系、数值的特点、变化的趋势,抓住图形的特征,利用图形所提供信息来解决问题.-42-典例(12分)如图,在正方体ABCD-A1B1C1D1中,E,F,P,Q,M,N分别是棱AB,AD,DD1,BB1,A1B1,A1D1的中点,求证:(1)直线BC1平面EFPQ;(2)直线AC1平面PQMN.-43-44-解题步骤第一步:由图形特征(正方体、中位线)推证AD1BC1,FPAD1,从而证FPBC1,可得结论.第二步:利用图形特征ACBD及CC1平面ABCD推证BD平面ACC1,从而得AC1BD.第三步:利用平行性证明MNAC1,PNAC1,可证AC1平面PQMN.证明(1)连接AD1,由ABCD-A1B1C1D1是正方体,知AD1BC1,因为F,P分别是AD,DD1的中点,所以FPAD1.从而BC1FP.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论