版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、数学模型在物理解题中的运用陕西省宝鸡市陈仓区教育局教研室邢彦君数学不仅是解决物理问题的工具,数学方法更是物理学的研究方法之一。在物理解题中,可以运用数学方法,将物理问题转化为数学问题,将“物理模型”转化成“数学模型”,然后运用数学的方法进行求解或论证,再将数学结论回归到物理问题中进行验证,完成物理问题的求解。一、函数模型函数模型就是建立起所求量或所研究量与已知量或决定量之间的函数关系,然后运用函数的运算或性质进行运算或判断。这是物理解题中最常用的数学模型,一般用来解决最值问题或变量问题比较方便。例1一辆汽车在十字路口等候红绿灯,当绿灯亮时汽车以3m/s2的加速度开始行驶,恰在这时一辆自行车以6
2、m/s的速度匀速驶来,从后边赶过汽车。求汽车从路口开动后,在追上自行车之前经过多长时间两车相距最远?最远距离是多少?分析与求解:设汽车起动后经时间t还未追上自行车,则汽车的位移为:s1=at2,自行车的位移为:s2=vt,二者间距为s=s2-s1=vt-at2。带入已知数据,建立s与的函数关系式:。由此式可知:当2s时,s最大为6m。即汽车从路口开动后,在追上自行车之前2s两车相距最远,最远距离是6m。二、三角模型有关涉及位移、速度、加速度、力等矢量的问题,可运用矢量合成与分解的平行四边形定则建立由表示已知量与未知量的矢量构成的矢量三角形,运用三角形的知识进行求解与分析。例2如图所示,用细绳悬
3、ab吊一质量为的物体,现在ab中的某点o处再结一细绳用力f拉细绳,使细绳的ao部分偏离竖直方向的夹角为后保持不动,则f的最小值是多少?分析与求解:以点为研究对象,则它在ao绳的拉力fao,bo的拉力fbo=mg,拉力f三个力的作用下处于静止状态,因此,这三个力相互平衡。这样,表示这三个力的矢量,首尾相接应该组成一个封闭三角形。由于绳bo对o点的拉力fbo=mg恒定不变,绳ao 对o点的拉力方向不变。所以,当f方向变化时,由图1可以看出,当f方向与ao垂直时,f最小,f=mg三、图像模型图像模型就是,在平面直角坐标系中,建立起有某种关系的物理量间的关系图像,利用图像与坐标轴围成的面积,图像与坐标
4、轴的交点,图像间的交点的物理意义进行分析和求解。这类问题求解时,准确化出图像是关键。例3如图2所示,两光滑斜面的总长度相等,高度也相同,两球由静止从顶端滑下,若求在右图斜面上的转折处无能量损失,则两球谁先滑至底端?分析与求解:由于两斜面光滑,高度相等。因此,两球滑至底端时的速度大小相等。球在c点之前的加速度大于球的加速度,在c点之后的加速度小于a球加速度。又因为两斜面长度相等,即两球下滑的路程相等,故两图象下的面积相等。这样,作出速度图像如图所示,由图可看出:tbta,即球先滑至斜面底端。四、不等式模型所谓不等式模型,就是根据题意或解题要求,就所求量和题中已知量建立起不等关系式,通过不等式的求
5、解和分析,完成物理问题的求解。例4如图3-(a)所示,用一水平力f使质量为的物体静止于倾角为的斜面上,已知斜面对物体的最大静摩擦力为它们接触面间压力的倍,求水平力f的大小?分析与求解:物体恰要上滑时,受力如图()所示,物体恰要下滑时受力如图()所示。不管是上滑还是下滑,物体和斜面间的压力都为:nmgcos+fsin。欲使物体不上滑,应有:fcosmgsin+n。欲使物体不下滑,应有:fcos+nmgsin。解以上几式得f的取值范围为:f。五、一元二次方程模型一元二次方程模型,就是使题中涉及的已知量和未知量构成一个一元二次方程,利用解根的判别式或韦达定理进行求解或分析。例5甲、乙两汽车相距s,甲
6、在前,乙在后,沿着同一条直线同时开始向前运动,甲以速度v0匀速运动,乙由静止开始以加速度a匀加速运动。问什么情况下甲能追上乙?什么情况下甲追不上乙?分析与求解:设从运动开始到甲追上乙的时间为t,则这段时间里甲乙辆车的位移分别为:s甲=,s乙=,这一过程中,两车的位移间应有:s乙+s= s甲,由这三式得:,这是关于t的一元二次方程,解此方程得:,由此可知:(1)当即时方程无解,甲追不上乙。(2)当即时方程有一解,开始后=时刻,甲追上乙,此时两车速度相等。(3)当即时方程有两解,开始后时刻甲追上乙,此后甲超过乙,时刻乙又赶上并超过甲。故,若,甲不能追上乙.若,甲能追上乙。例6竖直上抛的物体,分别在
7、t1秒末和t2秒末两次通过空中某一点,求该点离地面的高度和抛出时的速度。(不计空气阻力)分析与求解:设物体先后两次通过的这一点离地面的高度位h,物体被抛出时的速度为vo。由竖直上抛运动的位移公式可知,从物体被抛出到经过这一位置应有:,此时可变形为关于t的一元二次方程:,物体通过高度位h的点的时刻t1、t2就是该方程的两个解。由韦达定理知:,由此两式可得:,。六、圆与切线模型对于物体受三个共点力作用,其中两个力是变化的这类问题,小船渡河问题等,可建立圆与切线模型,对原物理问题进行分析求解.例7用绝缘细线悬挂一质量为,带电量为+q的小球,竖直平面内有场强为e、方向不定的匀强电场,且qemg,小球在
8、电场中处于静止状态。求细线与竖直方向的最大夹角及此时电场的方向。分析与求解:由于小球处于静止状态,因此,所受重力mg、电场力qe、细线拉力t三力矢量首尾相接构成封闭三角形。三力中,重力mg大小、方向均不变,电场力大小不便,但方向不定,对应不同方向的电场力,细线拉力的董小、方向均不同。如图4所示,以表示重力的矢量末端为圆心、表示电场力的矢量qe为半径做圆,则当表示细线拉力的矢量t园相切时,细线与竖直方向的夹角最大,由图可知,这个最大夹角为:,这也是电场方向与水平方向的夹角,即,电场沿与水平方向成角斜向上时,细线与竖直方向有最大夹角。2008-08-20人教数学在物理中的应用(2008-07-17
9、 08:08:24) 转载标签: 极值空间想象力图线二次函数物理量教育分类: 教育叙事 虽然解高中物理题时能否将物理条件用数学式表达出来,属于应数用学处理物理问题的能力.而现在高考中所谓的难题就是要求学生有这种能力。 一、数学应用一图像物理状态、过程以及物理量之间的关系是研究、处理物理问题的重要方法和手段,在高中物理里有很多这方面的内容。如力学中的v-t、s-t图线,振动图线和波形图,热学中的p-v图、p-t图等,电学中的电路图、i-u图,以及根据题目自己建立坐标系作图等等。这些图像中,很多并不是我们观察到的实物图,而是一些量与量之间的关系图线、示意图。从图像中利用数学知识我们知道两个物理量用
10、图像表达是什么函数关系,正比例函数,一次函数,二次函数或其他,图像的切线,图像的横截距、纵截距,图像的渐近线,图像的斜率,图像的交点、图像与轴所围面积等各代表什么含义。在平时学习时,一定要把它们的物理意义弄清楚。同时培养自己用图像处理物理问题的能力。二、数学应用二空间想象力学习立体几何要求有空间想象力,同时有把空间图形转成平面图的能力。同样物理也要求把一立体图转化成侧视、俯视、仰视等利于自己解题的平面图。掌握了这方面能力,对理解这道题意有相当大的帮助。高中物理中如斜面上的力学题,电磁学中涉及v、b、f、i等物理量方向的题,一般题目中给出的都是实物立体图,如在练习中加强自己对空间想象力的培养,那处理这类题目就不会手足无措了。三、数学应用三最值问题数学中的二次函数求极值,基本不等式求极值在高中物理中应用得非常普遍。比如热学中经常求温度至少升高到多少可以使管内水银全部溢出等题就用到了二次函数求极值,而很多学生看到列式中的p、v就不会求极值了,一旦把他们转成x、y就会了,说明学生对于数学在物理学科中的应用能力还相当缺乏。所以要学会举一反三,培养自己数学知识渗透物理解题的能力。四、数学应用四公式灵活运用解某数学些物理题目时进行适当的数学处理可以使题目简单化,比如矢量和向量的对比转化,正弦定理、余弦定理的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026届黑龙江哈尔滨市第六中学高一生物第二学期期末教学质量检测试题含解析
- 2025年安徽霍邱县事业单位考试及答案
- 2025年辽宁省事业单位转变考试及答案
- 2025年第一批美团笔试及答案
- 2025年中国人民大学教资笔试及答案
- 2024年迁西县招教考试备考题库含答案解析(夺冠)
- 2025年四川汽车职业技术学院马克思主义基本原理概论期末考试模拟题及答案解析(必刷)
- 2025年阿勒泰职业技术学院单招职业适应性考试题库带答案解析
- 2025年门源县招教考试备考题库及答案解析(必刷)
- 2025年华宁县幼儿园教师招教考试备考题库带答案解析
- 基于区域对比的地理综合思维培养-以澳大利亚和巴西人口分布专题复习课设计(湘教版·八年级)
- 2025年高考(海南卷)历史真题(学生版+解析版)
- 2026河北石家庄技师学院选聘事业单位工作人员36人备考考试试题附答案解析
- NB-SH-T 0945-2017 合成有机酯型电气绝缘液 含2025年第1号修改单
- 企业培训课程需求调查问卷模板
- 2026届福州第三中学数学高二上期末检测模拟试题含解析
- 2026年细胞治疗 免疫性疾病治疗项目商业计划书
- (一模)郑州市2026年高中毕业年级(高三)第一次质量预测数学试卷(含答案及解析)
- NBT 11898-2025《绿色电力消费评价技术规范》
- 2026年总经理工作计划
- 四年级数学(三位数乘两位数)计算题专项练习及答案
评论
0/150
提交评论