




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第2课时球的表面积和体积知识点球的表面积和体积1球的表面积如果球的半径为R,那么它的表面积S4R2.2球的体积如果球的半径为R,那么它的体积VR3.1判一判(正确的打“”,错误的打“”)(1)决定球的大小的因素是球的半径()(2)球面被经过球心的平面截得的圆的半径等于球的半径()(3)球的体积V与球的表面积S的关系为VS.()答案(1)(2)(3)2做一做 (1)若球的过球心的圆面圆周长是c,则这个球的表面积是()A. B. C. D2c2(2)表面积为4的球的半径是_(3)直径为2的球的体积是_(4)已知一个球的体积为,则此球的表面积为_答案(1)C(2)1(3)(4)4题型一 球的表面积与
2、体积例1(1)已知球的直径为6 cm,求它的表面积和体积;(2)已知球的表面积为64,求它的体积;(3)已知球的体积为,求它的表面积解(1)球的直径为6 cm,球的半径R3 cm.球的表面积S球4R236(cm2),球的体积V球R336(cm3)(2)S球4R264,R216,即R4.V球R343.(3)V球R3,R3125,R5.S球4R2100.求球的体积与表面积的方法(1)要求球的体积或表面积,必须知道半径R或者通过条件能求出半径R,然后代入体积或表面积公式求解(2)半径和球心是球的关键要素,把握住这两点,计算球的表面积或体积的相关题目也就易如反掌了(1)两个球的半径相差1,表面积之差为
3、28,则它们的体积和为_;(2)已知球的大圆周长为16 cm,求这个球的表面积答案(1)(2)见解析解析(1)设大、小两球半径分别为R,r,则由题意可得它们的体积和为R3r3.(2)设球的半径为R cm,由题意可知2R16,解得R8,则S球4R2256(cm2).题型二 球的截面问题例2一平面截球O的球面所得圆的半径为1,球心O到平面的距离为,则此球的体积为()A. B4 C4 D6解析利用截面圆的性质先求得球的半径长如图,设截面圆的圆心为O,M为截面圆上任一点,则OO,OM1,OM ,即球的半径为,V()34.答案B球的截面的性质(1)球的轴截面(过球心的截面)是将球的问题(立体几何问题)转
4、化为平面问题(圆的问题)的关键,因此在解决球的有关问题时,我们必须抓住球的轴截面,并充分利用它来分析解决问题(2)用一个平面去截一个球,截面是圆面,如图,球的截面有以下性质:球心和截面圆圆心的连线垂直于截面;球心到截面的距离d与球的半径R及截面的半径r满足关系d.(1)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,若不计容器厚度,则球的体积为()A. cm3B. cm3C. cm3D. cm3(2)球的表面积为400,一个截面的面积为64,则球心到截面的距离为_答案(1)A(2)6解析(1)如图,作出球的
5、一个截面,则MC862(cm),BMAB84(cm)设球的半径为R cm,则R2OM2MB2(R2)242,R5,V球53(cm3)(2)如图,由已知条件知球的半径R10,截面圆的半径r8,球心到截面的距离h6.题型三 球的组合体问题例3设长方体的长、宽、高分别为2a,a,a,其顶点都在一个球面上,则该球的表面积为()A3a2 B6a2 C12a2 D24a2解析作出图形的轴截面如图所示,点O即为该球的球心,线段AB即为长方体底面的对角线,长度为a,线段BC即为长方体的高,长度为a,线段AC即为长方体的体对角线,长度为a,则球的半径Ra,所以球的表面积S4R26a2.答案B条件探究将本例中长方
6、体改为棱长为a的正四面体,则球的表面积如何求?解如图,过A作底面BCD的垂线,垂足为E,则E为BCD的中心,连接BE.棱长为a,BEaa.在RtABE中,AEa.设球心为O,半径为R,则(AER)2BE2R2,Ra,S球42a2.1.正方体的内切球球与正方体的六个面都相切,称球为正方体的内切球,此时球的半径为r1,过在一个平面上的四个切点作截面如图(1)2长方体的外接球长方体的八个顶点都在球面上,称球为长方体的外接球,根据球的定义可知,长方体的体对角线是球的直径,若长方体过同一顶点的三条棱长分别为a,b,c,过球心作长方体的对角线,则球的半径为r2,如图(2)3正四面体的外接球正四面体的棱长a
7、与外接球的半径R的关系为:2Ra.设三棱柱的侧棱垂直于底面,所有棱的长都为a,顶点都在一个球面上,则该球的表面积为()Aa2 B.a2 C.a2 D5a2答案B解析由题意知,该三棱柱为正三棱柱,且侧棱与底面边长相等,均为a.如图,P为三棱柱上底面的中心,O为球心,易知APaa,OPa,所以球的半径ROA满足R222a2,故S球4R2a2.1将棱长为2的正方体木块削成一个体积最大的球,则该球的体积为()A. B. C. D.答案A解析由题意知,此球是正方体的内切球,根据其几何特征知,此球的直径与正方体的棱长是相等的,故可得球的直径为2,所以球的半径为1,其体积是13.2正四棱锥的顶点都在同一球面
8、上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A. B16 C9 D.答案A解析如图,设球心为O,半径为r,则在RtAOE中,(4r)2()2r2,解得r,该球的表面积为4r242.3三个球的半径之比为123,那么最大球的表面积是其余两个球的表面积之和的()A1倍 B2倍 C.倍 D.倍答案C解析设最小球的半径为r,则另外两个球的半径分别为2r,3r,其表面积分别为4r2,16r2,36r2,故最大球是其余两个球的表面积之和的倍4一个距离球心为的平面截球所得的圆面面积为,则球的体积为_答案解析设所得的圆面的半径为r,球的半径为R,则由r2,得r1,又r2()2R2,R2.VR3.5有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度解由题意知,圆锥的轴截面为正三角形,如图所示
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 内蒙古自治区丰镇市第一中学2024-2025学年高二下学期期中考试政治试题B卷(原卷版+解析版)
- 国际货品进出口贸易合同
- 智慧交通运输管理平台开发与服务协议
- IT技术支持与服务提供合同细节规定事项清单
- 物业内勤的工作总结(14篇)
- 音内容制作及版权转让协议
- 2025福建南安市首创水务有限责任公司招聘6人笔试参考题库附带答案详解
- 2025福建武夷碳产业投资有限公司招聘2人笔试参考题库附带答案详解
- 2025浙江省安全生产科学研究有限公司招聘15人笔试参考题库附带答案详解
- 2025年甘肃省庆阳市新庄煤矿面向社会招聘生产性灵活用工206人笔试参考题库附带答案详解
- 北师大版 2024-2025学年四年级数学上册典型例题系列第六单元:商的变化规律和商不变的性质专项练习(原卷版+解析)
- 2024年英语B级考试真题及答案
- 人教版五年级英语123单元测试卷名校版含答案
- 施工升降机安装拆卸安全教育
- 农村土地承包法知识讲座
- 2023年浙江省高考满分作文:科技的新秀人文的毒酒
- 草木缘情:中国古典文学中的植物世界
- 中国绝缘材料产品及应用手册
- 擒拿格斗课件
- 药品召回函和通知单
- 中国马克思主义与当代思考题(附答案)
评论
0/150
提交评论