341相似三角形的判定PPT教学课件_第1页
341相似三角形的判定PPT教学课件_第2页
341相似三角形的判定PPT教学课件_第3页
341相似三角形的判定PPT教学课件_第4页
341相似三角形的判定PPT教学课件_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 已知:已知:DE/BC,且,且D是边是边AB的中点的中点,DE交交AC于于E . 猜想:猜想:ADE与与ABC有什么关系有什么关系?并证明。并证明。ABCDE证明证明:且且 A= A DE / BC1 =B,2 =C ADE与与ABC的对应角相等的对应角相等相似。相似。1 2三角形的中位线截得的三角形与原三角形相似,相似比三角形的中位线截得的三角形与原三角形相似,相似比 。 四边形四边形DBFE是平行四边形是平行四边形 DE=BF , DB= EF ADE ABCABCDEF过过E作作EF/AB交交BC于于F 又又 DE / BC又又 AD = DB AD = EF A =3, 2 =C A

2、DE EFC DE = FC =BF, ADE与与ABC的对应边成比例的对应边成比例23AE=EC12A EA C12D EB C12A DA ED EA BA CB C12已知:已知:DE/BC,ADE与与ABC有什么关系有什么关系?猜想:猜想:ADE与与ABC有什么关系有什么关系?相似。相似。ABCDEF当点当点D在在AB上任意一点时,上面的结论还成立吗?上任意一点时,上面的结论还成立吗?12你能证明吗?你能证明吗? 平行于三角形一边的直线与其他两边平行于三角形一边的直线与其他两边(或(或两边的延长线)两边的延长线)相交,截得的三角形与原三角形相交,截得的三角形与原三角形相似。相似。DEA

3、CB延伸延伸即:即:如果如果DEBC,那么那么ADEABC你能证明吗?你能证明吗?X型型 定义定义判定方法判定方法全等全等三角三角形形相似相似三角三角形形回顾并思考回顾并思考三角、三边对三角、三边对应相等的两个应相等的两个三角形全等三角形全等三角对应相等三角对应相等, 三三边对应成比例的两边对应成比例的两个三角形相似个三角形相似 角边角边角角ASA角角角角边边AAS边边边边边边SSS边角边角边边SAS斜边与直角斜边与直角边边HL 判定三角形相似,是不是也有这么多种方法呢?判定三角形相似,是不是也有这么多种方法呢?边边边边边边SSS已知:已知:ABCA1B1C1.A1B1C1ABC111111.

4、ABBCACA BB CA C求证:求证:有效利用判定定理一去求证。有效利用判定定理一去求证。探究探究1 证明:在线段证明:在线段 (或它的延长线)上截(或它的延长线)上截取取 ,过点,过点D作作 ,交,交 于点于点E根据前面的定理可得根据前面的定理可得 .11A B1A DAB11D EB C11A C1111A D EA B CA1B1C1ABCDE11111111A DA ED EA BB CA C1111111,A BB CA CA DA BA BB CA C1A EA C,D EB C111A B CA B C1A D EA B C又又A1B1C1ABCDE111111111,A E

5、D EB CA CB CB CA CA C(SSS)1111A D EA B C 如果两个三角形的三组对应边成比如果两个三角形的三组对应边成比例,那么这两个三角形相似。例,那么这两个三角形相似。知识要点知识要点判定三角形相似的定理之一判定三角形相似的定理之一ABCA1B1C1.111111,ABBCACA BB CA C即:即:如果如果那么那么A1B1C1ABC 三边对应成比例,两三角形相似。三边对应成比例,两三角形相似。边边边边边边SSSA BB CA CA DD EA E,求证:求证:BAD=CAE。ADCEBABCADEBAC=DAEBACDAC =DAEDAC即即BAD=CAE已知:已

6、知:解:解:A BB CA CA DD EA E,边角边边角边SAS探究探究2已知:已知:ABCA1B1C1.A1B1C1ABC1111,ABBCkA BB C求证:求证:B =B1 .你能证明吗?你能证明吗? 如果两个三角形的两组对应边成比例,如果两个三角形的两组对应边成比例,并且相应的夹角相等,那么这两个三角形并且相应的夹角相等,那么这两个三角形相似。相似。知识要点知识要点判定三角形相似的定理之二判定三角形相似的定理之二两边对应成比例,且夹角相等,两边对应成比例,且夹角相等,两三角形相似。两三角形相似。边角边边角边SASA1B1C1ABCABCA1B1C1.即:即:如果如果1111,ABB

7、CkA BB CB =B1 .那么那么 大家一起画一个三角形大家一起画一个三角形 ,三个角分别为,三个角分别为60、45、75,大家画出的三角形相似吗,大家画出的三角形相似吗?同桌的同同桌的同学,通过测量对应边的长度进行比较。学,通过测量对应边的长度进行比较。探究探究3即:如果一个三角形的三个角分别与另一个三角形即:如果一个三角形的三个角分别与另一个三角形的三个角对应相等,那么这两个三角形的三个角对应相等,那么这两个三角形_。相似相似一定需要三一定需要三个角吗?个角吗?角边角角边角ASA角角边角角边AAS角角角角AAA1B1C1ABC已知:已知:ABCA1B1C1.求证:求证:A =A1,B

8、=B1 .你能证明吗?你能证明吗? 如果两个三角形的两个角与另一个如果两个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形的两个角对应相等,那么这两个三角形相似。三角形相似。知识要点知识要点判定三角形相似的定理之三判定三角形相似的定理之三两角对应相等,两三角形相似。两角对应相等,两三角形相似。角角角角AAA1B1C1ABCABCA1B1C1.即:即:如果如果那么那么A =A1,B =B1 . 如果两个三角形有一个内角对应相等,如果两个三角形有一个内角对应相等,那么这两个三角形一定相似吗?那么这两个三角形一定相似吗?一角对应相等的两个三角形不一定相似。一角对应相等的两个三角形不一定

9、相似。ACD CBD ABC找出图中所有的相似三角形。找出图中所有的相似三角形。“双垂直双垂直”三角形三角形BDAC有三对相似三角形:有三对相似三角形:ACD CBDCBD ABCACD ABC例题已知:已知:DEBC,EFAB.求证:求证:ADEEFC. AEFBCD解解: DEBC,EFAB(已知)(已知) ADEBEFC (两直线平行,同位角相等)(两直线平行,同位角相等)AEDC(两直线平行,同位角相等)(两直线平行,同位角相等) ADEEFC (两个角分别对应相等的两个三角形相似)(两个角分别对应相等的两个三角形相似)探究探究4已知:已知:ABCA1B1C1.1111,ABBCkA

10、BB C求证:求证:你能证明吗?你能证明吗?HLABCA1B1C1RtABC 和和 RtA1B1C1. 如果一个直角三角形的如果一个直角三角形的斜边斜边和一条和一条直角直角边边与另一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,对应成比例, 那么这两个直角三角形相似。那么这两个直角三角形相似。知识要点知识要点判定三角形相似的定理之四判定三角形相似的定理之四HLABCABCA1B1C1.即:即:如果如果那么那么A1B1C11111,ABBCkA BB CRtABC 和和 RtA1B1C1. 平行于三角形一边的直线与其他两边相交平行于三角形一边的直线与其他两边相交,

11、截得的三角形与原三角形相似截得的三角形与原三角形相似; 两边对应成比例且夹角相等两边对应成比例且夹角相等,两三角形相两三角形相似似.(SAS)相似三角形的判定方法相似三角形的判定方法 三边对应成比例三边对应成比例,两三角形相似两三角形相似.(SSS) 两角分别相等的两个三角形相似(两角分别相等的两个三角形相似(AA) 一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成一个直角三角形的斜边和一条直角边对应成比例,比例, 那么这两个直角三角形相似。那么这两个直角三角形相似。(HL)(1)所有的等腰三角形都相似。)所有的等腰三角形都相似。(

12、2)所有的等腰直角三角形都相似。)所有的等腰直角三角形都相似。(3)所有的等边三角形都相似。)所有的等边三角形都相似。(4)所有的直角三角形都相似。)所有的直角三角形都相似。(5)有一个角是)有一个角是100 的两个等腰三角形都相似。的两个等腰三角形都相似。(6)有一个角是)有一个角是70 的两个等腰三角形都相似。的两个等腰三角形都相似。(7)若两个三角形相似比为)若两个三角形相似比为1,则它们必全等。,则它们必全等。(8)相似的两个三角形一定大小不等。)相似的两个三角形一定大小不等。1. 判断下列说法是否正确?并说明理由。判断下列说法是否正确?并说明理由。 1. 如果两个三角形的相似比为如果两个三角形的相似比为1,那么这两个,那么这两个三角形三角形_。 2. 若若ABC与与ABC相似,一组对应边的长相似,一组对应边的长为为AB=3 cm,AB=4 cm,那么,那么ABC与与ABC的相似比是的相似比是_。 3. 若若ABC的三条边长的比为的三条边长的比为3cm、5cm、6cm,与其相似的另一个与其相似的另一个ABC的最小边长为的最小边长为12 cm,那么,那么ABC的最大边长是的最大边长是_。全等全等4324cmADBEC解解: (1) DE BC AD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论