(完整版)纳维-斯托克斯存在性与光滑性_第1页
(完整版)纳维-斯托克斯存在性与光滑性_第2页
(完整版)纳维-斯托克斯存在性与光滑性_第3页
(完整版)纳维-斯托克斯存在性与光滑性_第4页
(完整版)纳维-斯托克斯存在性与光滑性_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、纳维-斯托克斯存在性与光滑性纳维-斯托克斯存在性与光滑性 是有关纳维-斯托克斯方程 其解的数学性质有关的数学问题,是 美国克雷数学研究所 在2000年提出的7个千禧年大奖难题 中的一个问题。纳维-斯托克斯方程是 流体力学的重要方程,可以描述空间中 流隹(液体或气体)的运动。纳维-斯托克斯方程的解可以用到许多实务应用的领域中。不过对于纳维-斯托克斯方程解的理论研究仍然不足,尤其纳维-斯托克斯方程的解常会包括 重述。虽然紊流在科学及工程中非常的重要,不过紊 流仍是未解决的物理学问题 之一。许多纳维-斯托克斯方程解的基本性质都尚未被证明。例如数学家就尚未证明在三维坐标,特定 的初始条件下,纳维-斯托

2、克斯方程是否有符合光滑性的解。也尚未证明若这棣的解存在时,其动能有其上下界,这就是“纳维-斯托克斯存在性与光滑性”问题。由于了解纳维-斯托克斯方程被视为是了解难以捉摸的紊流现象的第一步,克雷数学研究所 在2000年5月提供了美金一百万的奖金给第一个提供紊流现象相关资讯的人,而不是给第一个创建紊流 理论的人。基于上述的想法,克雷数学研究所设定了以下具体的数学问题:证明或反证以下的叙述:在三维的空间及时间下,给定一起始的速度场,存在一矢量的速度场及标量的压强场,为纳维-斯托克斯 方程的解,其中速度场及压强场需满足光滑及全局定义的特性。目录? 1纳维-斯托克斯方程? 2二种条件:无边界及周期性的空间

3、? 3在整个空间下问题的说明o 3.1假设及无穷远处特性o 3.2在整个空间中的千禧年大奖难题描述? 4周期性问题的说明o 4.1假设o 4.2周期性的千禧年大奖难题描述? 5部分结果? 6脚汴? 7参考资料? 8外部链接1纳维-斯托克斯方程以数学的观点来看,纳维-斯托克斯方程是一个针对任意维度矢量场的 非线性偏微分方程在物理及工程的观点看,纳维-斯托克斯方程是一个用连续介质力学描述液体或非稀疏气体运动 的方程组。此方程是以 牛顿第二运动定律 为基础,考虑一黏滞性牛顿流体 的所有受力,包括压强、黏 滞力及外界的体积力。由于克雷数学研究所提出的问题是以三维空间下, 不可压缩的匀质流体为准,以下也

4、只考虑此条 件下的纳维-斯托克斯方程。令为描述流体速度的三维矢量场,且为流体压强 4o纳维斯托克斯方程为:+ (v - V)v = Vp+ pAv + f(5 土)其中1为动黏滞度f (电土)为外力为梯度运算子为拉普拉斯算子,也可写为V V上述方程是矢量方程,可以分解为三个标量的方程,将速度及外力分解为三个坐标下的分量:=(心1(方为见工)电。=53,用叫。巴力则纳维-斯托克斯方程可写成以下的形式, =j=l/2=1 J其中的未知数有速度V(国f)及压强由于只考虑三维空间,因此有三个方程及四个未知数, 分别是速度的三个分量及压强,还需要一个方程才能解出所有的未知数。这个新增的方程是描述流体 不

5、可压缩性的连续性方程:V v = 0.由于最后一个方程,纳维-斯托克斯方程解的速度会是无 散度的矢量函数。对于在均匀介质中的无散 度流,其密度及动黏滞度为定值。2二种条件:无边界及周期性的空间克雷数学研究所提出的纳维-斯托克斯问题,有二种不同的条件。原始问题是在整个空间 股,中, 需要有关初始条件及解随位置变化的额外资讯。 为了不要考虑初始条件及解在无穷远处的特性,纳维-斯托克斯方程也可以设定在一个周期性的空间中,因此不需考虑方程在整个空间腰只需考虑方程在一个3维环面T3 =下的特性。以下会分别处理这二种条件下的问题。3在整个空间下问题的说明3.1假设及无穷远处特性初始条件丫0(1假设是迄及无

6、散度的函数,使得对于每一个 多重指标口及K,存在一常数 (此常数会依及K而变化)使得|vo(x)| t(1+国产对于所有工瞪.外力f (不)假设也是一个光滑函数,满足一个非常类似的不等式(此时多重指标也包括时间的导数):C川产奴一考虑其实际的物理意义,此条件下的解需是光滑函数,当 住I T0时不会快速增加。更精准地说,有 以下的假设:1 . vCM) Rx 03)广P”) 解 X 巴8)I |v(即0.条件1表示此函数为光滑、全局定义的函数,条件 2表示此解的动能在全局中有上下界。3 .2在整个空间中的千禧年大奖难题描述令f (跖t) w 0。对于所有符合上述假设的初始条件V0(H),纳维-斯

7、托克斯方程存在一光滑及全局 定义的解,就是存在一速度矢量羽9及压强P(1N)满足上述的条件1及2。(B) R下纳维-斯托克斯方程解存在性的反证存在一初始条件V。(工)及外力f(匹。使得纳维-斯托克斯方程不存在一解满足上述条件1及2。4周期性问题的说明4.1假设此处的函数需满足对于位置变量的周期性,其周期为1。更精准地说,令监为j方向的单位矢量:ei = (1.0,0), s = (0/,0)3 仃= (0,0,1)则寸位置变量有周期性也就表示对于任何的I = 1,2,3,以下的式子均成立:v(x + %。= for aB eR3 x 0, g).因此方程不是在整个空间,而是在一商空间咫/欧,也

8、就是一个3维环面:炉=% 岛):0W仇2开,t= 1,2,3).有上述的说明后,可以说明需要的假设。初始条件 v0(q)假设是一个光滑及无散度的函数,外力也是 一个光滑函数。满足以下的条件:3 .X。.日忆丁 T认I4 .存在一常数匕 出,刈使得人对于所有t之0和之前的条件类似,条件3表示函数是光滑及全局定义,条件 4表示此解的动能在全局中有上下界。4.2周期性的千禧年大奖难题描述令对于任何满足上述假设的初始条件 皈工),纳维-斯托克斯方程存在一光滑及全局 定义的解,就是存在一速度矢量羽9及压强P(1N)满足上述的条件3及条件4。(D) 1P下纳维-斯托克斯方程解存在性的反证存在一初始条件V。及外力f (跖力使得纳维-斯托克斯方程不存在一解满足上述条件3及条件4。5部分结果1 .二维空间下的纳维-斯托克斯问题已在I960年代得证:存在光滑及全局定义解的解。2 .在初速相当小时此问题也已得证:存在光滑及全局定义解的解。3 .若给定一初速曲),且存在一有限、依V”幻而变动白W问T,使得在X 一的范围内,纳维-斯托克斯方程有平滑的解,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论