2021届高考数学一轮复习第三章导数及其应用创新引领前瞻函数与导数热点问题课件新人教A版_第1页
2021届高考数学一轮复习第三章导数及其应用创新引领前瞻函数与导数热点问题课件新人教A版_第2页
2021届高考数学一轮复习第三章导数及其应用创新引领前瞻函数与导数热点问题课件新人教A版_第3页
2021届高考数学一轮复习第三章导数及其应用创新引领前瞻函数与导数热点问题课件新人教A版_第4页
2021届高考数学一轮复习第三章导数及其应用创新引领前瞻函数与导数热点问题课件新人教A版_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、函数与导数热点问题函数与导数热点问题三年真题考情三年真题考情核心热点真题印证核心素养利用导数研究函数的性质2019,20;2018,21;2018,21;2017,21数学运算、逻辑推理利用导数研究函数的零点2019,20;2019江苏,19;2018,21(2)数学运算、直观想象导数在不等式中的应用2019,20;2018,21;2017,21;2017,21数学运算、逻辑推理热点聚焦突破热点聚焦突破教材链接高考导数在不等式中的应用教材探究(选修22p32习题1.3b组第1题(3)(4)利用函数的单调性证明下列不等式,并通过函数图象直观验证.(3)ex1x(x0);(4)ln xx0).试题

2、评析1.问题源于求曲线yex在(0,1)处的切线及曲线yln x在(1,0)处的切线,通过观察函数图象间的位置关系可得到以上结论,可构造函数f(x)exx1与g(x)xln x1对以上结论进行证明.2.两题从本质上看是一致的,第(4)题可以看作第(3)题的推论.在第(3)题中,用“ln x”替换“x”,立刻得到x1ln x(x0且x1),进而得到一组重要的不等式链:exx1x1ln x(x0且x1).3.利用函数的图象(如图),不难验证上述不等式链成立.【教材拓展】 (一题多解)试证明:exln x2.证明法一设f(x)exln x(x0),所以当xx0时,f(x)0;当0 xx0时,f(x)

3、1xln x,故exln x2.【链接高考】 (2017全国卷)已知函数f(x)ln xax2(2a1)x.(1)解f(x)的定义域为(0,),当x(0,1)时,g(x)0;x(1,)时,g(x)0时,g(x)0,教你如何审题利用导数研究函数的性质【例题】 (2019全国卷)已知函数f(x)(x1)ln xx1.证明:(1)f(x)存在唯一的极值点;(2)f(x)0有且仅有两个实根,且两个实根互为倒数.审题路线自主解答证明(1)f(x)的定义域为(0,).故存在唯一x0(1,2),使得f(x0)0.又当xx0时,f(x)x0时,f(x)0,f(x)单调递增,因此,f(x)存在唯一的极值点.(2

4、)由(1)知f(x0)0,所以f(x)0在(x0,)内存在唯一根x.综上,f(x)0有且仅有两个实根,且两个实根互为倒数.探究提高1.利用导数研究函数的性质是历年高考的重点、热点,涉及的主要内容:(1)讨论函数的单调性;(2)求函数的极(最)值、极(最)值点;(3)利用性质研究方程(不等式).考查数学运算、逻辑推理、直观想象等数学核心素养.2.本题求解的关键是明确函数的极值点与函数零点之间的联系,充分运用函数的单调性、极值、零点存在定理综合求解,善于把函数的零点转化为方程根的问题.(1)试讨论函数f(x)的单调性;(2)设x1,x2是f(x)的两个极值点,且x2x1,设tf(x1)f(x2)(

5、a2)(x1x2),试证明t0.(1)解f(x)的定义域为(0,),若a2,则f(x)0,当且仅当a2,x1时f(x)0,所以f(x)在(0,)上单调递减.(2)证明由(1)知,f(x)存在两个极值点时,当且仅当a2.由于f(x)的两个极值点x1,x2满足x2ax10,所以x1x21.又因x2x10,所以x21.由第(1)问知,(x)在(1,)单调递减,且(1)0,从而当x(1,)时,(x)0.满分答题示范利用导数研究函数的零点问题(1)讨论f(x)的单调性,并证明f(x)有且仅有两个零点;(2)设x0是f(x)的一个零点,证明曲线yln x在点a(x0,ln x0)处的切线也是曲线yex的切线.规范解答(1)解f(x)的定义域为(0,1)(1,).所以f(x)在(0,1),(1,)单调递增.2分所以f(x)在(1,)有唯一零点x1(ex1e2),即f(x1)0.4分综上,f(x)有且仅有两个零点.7分所以曲线yln x在点a(x0,ln x0)处的切线也是曲线yex的切线.12分【规范训练】 (2019全国卷)已知函数f(x)sin xln(1x),f(x)为f(x)的导数.证明:(2)f(x)的定义域为(1,).当x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论