




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2020-2020学年山东省潍坊市寿光市七年级(上)期末数学试卷一、选择题(共12小题,每小题3分,满分36分)1 .下列说法中,正确的是()A. 0是最小的有理数 B. 0是最小的整数C. 0的倒数和相反数都是 0 D. 0是最小的非负数2 .下列说法中正确的个数为()(1)过两点有且只有一条直线;(2)连接两点的线段叫两点间的距离;(3)两点之间所有连线中,线段最短;(4)射线比直线小一半.A. 1个B.2个C. 3个D.4个4.甲数为x,乙数为y,则甲数的3倍与乙数的和除甲数与乙数的3倍的差,可表不为(5 .为了解某校七年级 500名学生身高情况,从中抽取了50名学生进行检测,这 50名
2、学生的身高是( )A .总体B .个体C.样本容量D .总体的一个样本6 .已知一个多项式与 3x2+9x的和等于3x2+4x - 1 ,则这个多项式是()A. - 5x- 1 B. 5x+1 C. - 13x- 1 D. 13x+17 .国家规定存款利息的纳税办法是:利息税二禾1息X20%,银行一年定期的利率为 2.25%,屠呦呦获得诺贝尔医学奖,假设她把所有奖金存入银行一年,预计一年到期后,提取本金及利息时要交纳13500元利息税,则屠呦呦的奖金是()元.A. 3X105B. 3M06C. 3M07D. 3M088 . A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行
3、.已知甲车速度为 120千米/时,乙车速度为80千米/时,经过t小时两车相距50千米,则t的值是()A. 2 或 2.5 B. 2 或 10 C, 10 或 12.5 D , 2 或 12.59 .如图是某人骑自行车的行驶路程s (千米)与行驶时间t (时)的函数图象,下列说法不正确的是( )2 1千米)3020100A.从0时到3时,行驶了 30千米B.从1时到2时匀速前进C.从1时到2时在原地不动D.从0时到1时与从2时到3时的行驶速度相同10 .在排成每行七天的日历表中,取下一个3M方块如图所示,若所有日期之和为81,则n的值为11 .已知下列方程: x-2/;0.2x=1 ;汇一3;x
4、-y=6;x=0,其中一元一次方程 K3有()A. 2个 B. 3个 C. 4个 D. 5个12 . 一学生从家去学校每小时走5千米,按原路返回时,每小时走4千米,结果返回的时间比去的时间多用10分钟,设去学校所用的时间为x小时,则正确列出的方程是()A 一 /10、。一 /10、八 U /10、 /C U / 10、 /A. 5x=4 (x+k)B - 5x=4 (x)C. 5 (x377) =4xD . 5 (x+) =4x6060606U、填空题(共 6小题,每小题4分,满分24分)13 .单项式-14 .从M点向同一方向作两条线段MN=10cm , MP=16cm ,若MN的中点为 A
5、, MP的中点为 B,贝U AB=cm.15 .若2x3y2n和一5xmy4是同类项,刃B么 m+n=.16 .方程2+3x=1与3a (1+x) =0的解相同,贝U a=17 .按照如图所示的操作步骤,若输入 x的值为-2,则输出的值为 .输入V T平方|一A乘以? -A瀛去5 |一A输出18 .如图所示是一组有规律的图案,第1个图案由4个基础图形组成,第 2个图案由7个基础图形组成,第n (n是正整数)个图案中的基础图形个数为 (用含n的式子表示).(1) 三、解答题(共6小题,满分60分)19 .已知有理数a, b在数轴上的位置如图所示.(1)在数轴上标出-a, - b的位置,并比较a,
6、 b, - a, - b的大小:(2)化简 |a+b|+|a b|.j.J.-芬J03才20 . x2 - 2+ (L2-y2) -W (-其中 x= - 2, y=-土2223,守321 .计算:(1) (-4) 2斗(1) 5十(省)3) -ZLL= -1.3622 .据测定,海底扩张的速度是很缓慢的,在太平洋海底,某海沟的某处宽度为100米,某两侧的地壳向扩张的速度是每年 6厘米,假设海沟扩张速度恒定,扩张时间为x年,海沟的宽度为 y米.(1)写出海沟扩张时间 x年与海沟的宽度y之间的表达式;(2)你能计算以下当海沟宽度 y扩张到400米时需要多少年吗?23 .同学们,今天我们来学习一个
7、新知识.这是一个高中或者大学里常见的数学指示,但是只要你 开动脑筋,用你所学的七年级数学知识同样可以完美解决,敢不敢挑战一下?相信自己是最棒的!形如3c的式子叫做二阶行列式,它的运算法则用公式表示为ac =ad - bc,解决以下问题:bd|bd|(1)你能仿照上面的解释,表示1np出的结果吗?nq(2)依此法则计算的结果是多少?| - 3g(3)再进一步,挑战一下!如果 53=4,那么x的值为多少?工+124 .为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是你平均每天参加体育活动的时间是多少 ”,共有4个选项:A、1.5小时以上;B、11.5小时;C、0.51小
8、时;D、0.5小时以下.图1、2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供 的信息,解答以下问题:(1)本次一共调查了多少名学生?(2)在图1中将选项B的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.2020-2020学年山东省潍坊市专光市七年级(上)期末数学试 卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1 .下列说法中,正确的是()A. 0是最小的有理数 B. 0是最小的整数C. 0的倒数和相反数都是 0 D. 0是最小的非负数【考点】有理数.【分析】根据零的意义,可得答案.【解答】
9、 解:A、没有最小的有理数,故 A错误;B、没有最小口的整数,故B错误;。C、0没有倒数,故C错误;D、0是最小的非负数,故 D正确;故选:D.【点评】 本题考查了有理数,零是自然数,是最小的非负数,是整数,注意零既不是正数也不是负2 .下列说法中正确的个数为()(1)过两点有且只有一条直线;(2)连接两点的线段叫两点间的距离;(3)两点之间所有连线中,线段最短;(4)射线比直线小一半.A. 1个B.2个C. 3个D.4个【考点】 直线、射线、线段;直线的性质:两点确定一条直线;线段的性质:两点之间线段最短;两点间的距离.【分析】根据直线、射线等相关的定义或定理分别判断得出答案即可.【解答】
10、解:(1)过两点有且只有一条直线,此选项正确;(2)连接两点的线段的长度叫两点间的距离,此选项错误;(3)两点之间所有连线中,线段最短,此选项正确;(4)射线比直线小一半,根据射线与直线都无限长,故此选项错误;故正确白有2个.故选:B.【点评】 本题主要考查学生对直线、射线概念公理的理解及掌握程度,熟记其内容是解题关键.【考点】展开图折叠成几何体.【分析】根据正方体展开图的类型,1-4-1型,2-3-1型,2-2-2型,3- 3型,只有C不属于 其中的类型,不能折成正方体,据此解答即可.【解答】 解:选项A, B, D折叠后都可以围成一个正方体,只有C折叠后第一行两个面无法折起来,而且下边没有
11、面,不能折成正方体.故选C.【点评】本题考查了平面图形的折叠及正方体的展开图,解决此题的关键是记住正方体展开图的基 本类型1-4-1型,2-3T 型,2-2-2型,3-3型.4 .甲数为x,乙数为v,则甲数的3倍与乙数的和除甲数与乙数的 3倍的差,可表示为()a.2 B.g C.j D.JYk - 3y if Sy3工一丁【考点】列代数式.【分析】由题意可知:甲数的 3倍与乙数的和为 3x+y,甲数与乙数的3倍的差为x- 3y,再进一步 相除得出答案即可.【解答】 解:甲数的3倍与乙数的和除甲数与乙数的3倍的差为二2土.3x+y |故选:C.【点评】 此题考查列代数式,理解题意,找出题目叙述的
12、运算顺序是解决问题的关键.5 .为了解某校七年级 500名学生身高情况,从中抽取了50名学生进行检测,这 50名学生的身高是( )A .总体B .个体C.样本容量D .总体的一个样本【考点】总体、个体、样本、样本容量.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的 一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这 四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出 样本,最后再根据样本确定出样本容量.【解答】解:为了解某校七年级 500名学生身高情况,从中抽取了50名学生进行检测,
13、这 50名学生的身高是总体的一个样本,故选:D.【点评】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本, 关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容 量是样本中包含的个体的数目,不能带单位.6 .已知一个多项式与 3x2+9x的和等于3x2+4x - 1 ,则这个多项式是()A. - 5x- 1 B. 5x+1 C. - 13x- 1 D. 13x+1【考点】整式的加减.【专题】计算题;整式.【分析】根据和减去一个加数等于另一个加数,计算即可得到结果.【解答】解:根据题意得:(3x2+4xT) - ( 3x2+9x) =
14、3x2+4x - 1 - 3x2 - 9x= - 5x - 1 , 故选A .【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.7 .国家规定存款利息的纳税办法是:利息税 二禾1息X20%,银行一年定期的利率为 2.25%,屠呦呦获 得诺贝尔医学奖,假设她把所有奖金存入银行一年,预计一年到期后,提取本金及利息时要交纳 13500 元利息税,则屠呦呦的奖金是()元.A. 3X105B. 3X106C. 3M07D. 3M08【考点】 科学记数法一表示较大的数.【分析】 首先利用已知求出奖金总数,再利用科学记数法的表示形式为aM0n的形式,其中1耳a|v10, n为整数.确定n的值时,
15、要看把原数变成 a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值1时,n是正数;当原数的绝对值v1时,n是负数.【解答】 解:设屠呦呦的奖金是 x元,根据题意可得:2.25%?xX20%=13500,解得:x=3000000,将3000000用科学记数法表示为:3X106.故选:B.【点评】此题考查了一元一次方程的应用以及科学记数法的表示方法.科学记数法的表示形式为aM0n的形式,其中1耳a|v 10, n为整数,表示时关键要正确确定a的值以及n的值.8 . A、B两地相距450千米,甲、乙两车分别从 A、B两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度
16、为80千米/时,经过t小时两车相距50千米,则t的值是()A. 2 或 2.5 B. 2 或 10 C, 10 或 12.5 D , 2 或 12.5【考点】一元一次方程的应用.【专题】 行程问题;压轴题.【分析】如果甲、乙两车是在环形车道上行驶,则本题应分两种情况进行讨论:一、两车在相遇以前相距 50千米,在这个过程中存在的相等关系是:甲的路程 +乙的路程=(450 - 50)千米;二、两车相遇以后又相距 50千米.在这个过程中存在的相等关系是:甲的路程+乙的路程=450+50=500已知车的速度,以及时间就可以列代数式表示出路程,得到方 .程,从而求出时间t的值. 【解答】 解:(1)当甲
17、、乙两车未相遇时,根据题意,得120t+80t=450 - 50,解得t=2;(2)当两车相遇后,两车又相距50千米时,根据题意,得 120t+80t=450+50 ,解得t=2.5.故选A .【点评】本题解决的关键是:能够理解有两种情况、能够根据题意找出题目中的相等关系.9 .如图是某人骑自行车的行驶路程s (千米)与行驶时间t (时)的函数图象,下列说法不正确的是( )n51千米)如丁-广7I I /|20 一二一:/一: I J i.一/wA+TfillQ_I_i12 3 f 画)A.从0时到3时,行驶了 30千米B.从1时到2时匀速前进C.从1时到2时在原地不动D.从0时到1时与从2时
18、到3时的行驶速度相同【考点】函数的图象.【专题】 压轴题;数与式.【分析】根据折线图,把某人骑自行车的行分为三段,即行驶-停止-行驶,再根据时间段进行判 断.【解答】解:根据图象从0到1时,以及从2时到3时,这两段时间,行驶路程 s与行驶时间t的函 数都是一次函数关系,因而都是匀速行驶,同时,两直线平行,因而速度相同,D正确;由图可知,从0时到3时,行驶了 30千米,A正确;而从1时到2时,路程S不变,因而这段时间这个人原地未动,C正确;说法B不正确.故选B.【点评】正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自 变量的增大,知道函数值是增大还是减小.10.在排
19、成每行七天的日历表中,取下一个3M方块如图所示,若所有日期之和为81,则n的值为( )A. 9 B. 15 C. 11 D. 27【考点】一元一次方程的应用.【分析】观察图片,可以发现日历的排布规律,因此可得出日历每个方块的代数式,从而求出n的值.【解答】 解:日历的排布是有一定的规律的,在日历表中取下一个3刈方块,当中间那个是n的话,它的上面的那个就是 n-7,下面的那个就是 n+7,左边的那个就是 n- 1,右 边的那个就是n+1 ,左边最上面的那个就是 n- 1-7,最下面的那个就是 n-1+7,右边最上面的那个就是n+1 - 7,最下面的那个就是 n+1+7,若所有日期数之和为81,贝
20、U n+1+7+n+1 7+n 1+7+n 1 7+n+1+n 1+n+7+n 7+n=81 , 9n=81,解得:n=9.故选:A.【点评】 考查了一元一次方程的应用,此题的关键是联系生活实际找出日历的规律,所以学生平时 要养成爱观察爱动脑的习惯.11.已知下列方程: 0.2x=1 ;汇一 3 ;x - y=6 ;x=0,其中一元一次方程有()A. 2个 B. 3个 C. 4个 D. 5个【考点】一元一次方程的定义.【分析】只含有一个未知数(元),并且未知数的指数是 1 (次)的方程叫做一元一次方程.它的一 般形式是ax+b=0 (a, b是常数且a为).【解答】 解: 不是整式方程,不是一
21、元一次方程;0.2x=1是一元一次方程;一;,3=x - 3是一兀一次方程;&,x - y=6 ,函数2个未知数,不是一元一次方程;x=0是一元一次方程.一元一次方程有: 共3个.故选B.【点评】 本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,-次项系数不是0,这是这类题目考查的重点.12. 一学生从家去学校每小时走5千米,按原路返回时,每小时走 4千米,结果返回的时间比去的时间多用10分钟,设去学校所用的时间为x小时,则正确列出的方程是()A. 5x=4 (x+)B. 5x=4 (xC. 5 (x=4x D. 5 (x+) =4x60606。60【考点】由实际问
22、题抽象出一元一次方程.【专题】探究型.【分析】根据一学生从家去学校每小时走5千米,按原路返回时,每小时走4千米,结果返回的时间比去的时间多用 10分钟设去学校所用的时间为 x小时,可知去学校和返回家的路程是一定的, 从而可以列出相应的方程,本题得以解决.【解答】 解:设去学校所用的时间为 x小时,则 5x=4 (x+1).【点评】 本题考查由实际问题抽象出一元一次方程,解题的关键是明确题意,列出相应的方程.二、填空题(共 6小题,每小题4分,满分24分)13 .单项式-【考点】单项式.【分析】由单项式中数字因数叫做单项式的系数,所有字母的指数和是单项式的次数,由此即可求解:单项式-2 ,一y的
23、系数是- la.故答案为:-71, 3. 5【点评】 此题主要考查了单项式的系数及其次数的定义,确定单项式的系数和次数时,把一个单项 式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.注意兀是常数.MN=10cm , MP=16cm ,若 MN的中点为 A, MP的中点为 B,14 .从M点向同一方向作两条线段贝U AB= 3 cm.【考点】 两点间的距离.AB的长.【分析】根据线段中点的性质,可得 MA, MB的长,根据线段的和差,可得 【解答】 解:由MN的中点为A, MP的中点为B,得由线段的和差,得AB=MB MA=8 5=3cm ,故答案为:3.【点评】 本题考查了两点
24、间的距离,利用线段中点的性质得出MA , MB的长是解题关键.15 .若2x3y2n和5xmy4是同类项,那么m+廿 5 .【考点】同类项.【分析】由同类项的定义可知:m=3, 2n=4,从而可求得 m、n的值,然后计算即可.【解答】 解:.2x3y2n和一5xmy4是同类项,1. m=3 , 2n=4.n=2.m+n=3+2=5 .故答案为;5.【点评】 本题主要考查的是同类项的定义,根据同类项的定义求得m、n的值是解题的关键.、,,一一 1:216 .万程 2+3x=1 与 3a (1+x) =0 的解相同,贝U a=【考点】同解方程.【分析】 先得出方程2+3x=1的解,然后代入 3a-
25、 (1+x) =0可得出关于a的方程,解出即可.【解答】解:2+3x=1 ,解得:x=, 3将*=-入 3a- (1+x) =0 可得:3a- ( 1-1)=0,33解得:a=.9【点评】 本题考查了同解方程的知识,解决的 ,关键是能够求解关于 x的方程,要正确理解方程解的 含义.17 .按照如图所示的操作步骤,若输入 x的值为-2,则输出的值为 7 输入.V 邛ZJ -乘以3 -*减去5 一a输出【考点】 有理数的混合运算.【专题】图表型.【分析】 把x= - 2代入运算程序中计算即可.【解答】 解:把x= - 2代入运算程序中得:(-2) 23- 5=12- 5=7, 故答案为:7【点评】
26、此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18 .如图所示是一组有规律的图案,第1个图案由4个基础图形组成,第 2个图案由7个基础图形组成,第n (n是正整数)个图案中的基础图形个数为3n+1 (用含n的式子表示).【考点】规律型:图形的变化类.3个基础图案,【专题】规律型.【分析】先写出前三个图案中基础图案的个数,并得出后一个图案比前一个图案多 从而得出第n个图案中基础图案的表达式.【解答】 解:观察可知,第1个图案由4个基础图形组成,4=3+1 第2个图案由7个基础图形组成,7=3X2+1, 第3个图案由10个基础图形组成,10=3X3+1 ,第n个图案中基础图形有:3n
27、+1,故答案为:3n+1.【点评】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,利用规律解 决问题.三、解答题(共6小题,满分60分)19 .已知有理数a, b在数轴上的位置如图所示.(1)在数轴上标出-a, - b的位置,并比较a, b, - a, - b的大小:(2)化简 |a+b|+|a-b|.1ib0 元【考点】 有理数大小比较;数轴;绝对值.【专题】作图题;实数.【分析】(1)首先根据-a与a, -b与b互为相反数,-a与a, - b与b表示的点关于原点对称,在数轴上标出-a, - b的位置;然后根据数轴的特征:一般来说,当数轴方向朝右时,右边的数总 比左边的:
28、数大,比较a, b, - a, - b的大小即可.(2)根据有理数a, b在数轴上的位置,可得 a0b,而且|a| 0,据此 化简|a+b|+|a- b|即可.【解答】解:(1)如图所示:b - a a0b,而且 |a|0,|a+b|+|a- b|=(a+b) + (a b)=-a- b+a- b=-2b【点评】(1)此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正数都大于0;负数都小于0; 正数大于一切负数; 两个负数,绝对值大的其值反而小.(2)此题还考查了数轴的特征和在数轴上表示数的方法,要熟练掌握,解答此题的关键是要明确:一般来说,当数轴方向朝右时,右边的数总
29、比左边的数大.(3)此题还考查了绝对值的含义和求法,要熟练掌握,解答此题的关键要明确:互为相反数的两个数绝对值相等; 绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数. 有理数的绝对值都是非负数.其中 x= - 2, y=20 . x2- 2+ (x2- y2)-222【考点】整式的加减一化简求值.【专题】计算题;整式.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=L2 2工x2+y2+x2 y2=x24y22,2222当x=-2, y=-3时,原式=4+2-2=2型.39 号【点评】此题考查了整式的加减-化简求值,熟练掌握运
30、算法则是解本题的关键.21 .计算:(1) (-4) 2 4(-1) 5E十(-工)3) . 36【考点】 有理数的混合运算;解一元一次方程.【专题】计算题;实数.【分析】(1)原式先计算乘方运算,再利用乘法分配律计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=8X( 1+3-1) =-8+6-1 = -3;4 8 去分母得:4x-2- 2x- 1 = - 6,移项合并得:2x= - 3,解得:x= - 1.5.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.据测定,海底扩张的速度是
31、很缓慢的,在太平洋海底,某海沟的某处宽度为100米,某两侧的地壳向扩张的速度是每年 6厘米,假设海沟扩张速度恒定,扩张时间为 x年,海沟的宽度为 y米.(1)写出海沟扩张时间 x年与海沟的宽度y之间的表达式;(2)你能计算以下当海沟宽度 y扩张到400米时需要多少年吗? 【考点】函数关系式.【分析】(1)根据题意得出扩张时间 x年时海狗增加的宽度为 6x米,即可得出结果;(2)根据y与x的表达式得出当y=400时,6x+100=400 ,解方程即可.【解答】解:(1)根据题意得:海狗增加的宽度为6x米,海沟扩张时间x年与海沟的宽度 y之间的表达式为:y=6x+100 ; (2)当 y=400 时,6x+100=400r,解得:x=50,答:当海沟宽度y扩张到400米时需要50年.【点评】本题考查了函数表达式的确定以及应用;根据题意得出函数表达式是解决问题的关键.23 .同学们,今天我们来学习一个新知识.这是一个高中或
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大学游泳考试题目及答案
- 中国农药流通项目创业投资方案
- 大学地方史考试题及答案
- 2024年北京十一实验中学招聘真题
- 初中压强考试题型及答案
- 2025电商平台项目开发合同书范本
- 中国聚醚酰亚胺(PEI)项目创业计划书
- 初三一模考试题及答案
- 三方协议书的协议书怎么填
- 宠物驱虫考试题及答案解析
- 2025四川产业振兴基金投资集团有限公司招聘12人笔试参考题库附带答案详解
- 幼儿园牦牛课件
- 2025至2030中国船舶自动驾驶行业调研及市场前景预测评估报告
- 延安整风运动
- 国防安全课件
- 业务跟单培训课件
- 2025考研政治真题及答案详细解析
- GJB763.5A-2020舰船噪声限值和测量方法第5部分舰船设备空气噪声测量
- 2025至2030中国玻璃天线行业项目调研及市场前景预测评估报告
- 清晖园简介教学课件
- MT/T 1217-2024煤矿在用带式输送机滚筒轴超声检测方法
评论
0/150
提交评论