几何光学学生讲义_第1页
几何光学学生讲义_第2页
几何光学学生讲义_第3页
几何光学学生讲义_第4页
几何光学学生讲义_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2009南师大附中校本竞赛教程 几何光学高二年级物理竞赛选修课程几何光学tuesday, may 12, 2009一、光的直进性光的直进性只是在通光孔或障碍物的线度比光的波长大的多的情况的一种近似。光程是指光在相同时间内实际路程所折合成光在真空中的路程。光若在折射率为n的介质中传播l的路程,则这段时间内光程就是nl。二、光的反射与折射 1、反射定律2、折射定律3、绝对折射率与相对折射率当光从媒质1射向折射率不同的另一种媒质2时,媒质2相对媒质1的相对折射率用n12表示,有: 例1:极限法测液体折射率的装置如图所示,abc是直角棱镜,其折射率ng为已知。将待测液体涂一薄层于其上表面ab,覆盖一块

2、毛玻璃,用扩展光源在掠入射方向照明毛玻璃,从棱镜的ao面出射的光线的折射角将有一下限i0/ (用望远镜观察,则在视场中出现有明显分界线的半明半暗区)。试求待测液体的折射率n。用这种方法测液体折射率,测量范围受什么限制?4、全反射 当光从光密煤质射向光疏煤质,即当n1n2时,由折射定律可知,折射角将大于入射角。当入射角增大至某值时,折射角r=90°。当入射角大于ic时,折射光消失。光全部被反射,这种现象称为全反射,ic称为临界角。全反射现象常被用来增强反射光的强度,减少光因透射而造成的能量损失。如在各种全反射棱镜、光导纤维中即是。例1:如图所示,在水中有两条平行光线1和2,光线2射到水

3、和平行平板玻璃的分界面上。(1)两光线射到空气中是否还平行?(2)如果光线1发生全反射,光线 2能否进入空气? 例2:一个立方玻璃块的中心有一个斑点,要使人们无论从哪个方向都看不见这斑点,必须把这立方块表面的哪些部分遮盖起来,被遮盖的面积占立方块表面积的百分比必须有多大?假定立方块的边长为 10厘米,玻璃的折射率为1.50(不考虑光线受到内反射以后的行为)三、光的可逆性原理 由反射定律和折射定律可知,若光逆着反射光方向入射,则其反射光必逆着入射光的方向传播;若光逆着折射光方向由媒质2射向媒质1,则折射光也必逆着原入射光的方向传播。也就是说,若光线方向逆转,光将沿同一路径反向传播这一结论称为光的

4、可逆性原理。四、单球面折射设想以c为球心的球面将空气(折射率视为l)与媒质(折射率为n)分为两部分,如图所示。这时,自空气中某一点(图中的s)发出的径向细光束经球面折射后将在媒质中聚焦于另一点(如图中的s/ ),我们称s/ 点为为点的象。由光路可逆原理,自s/ 点发出的光经球面折射后将聚焦于s,这时,s点就成为s/ 点的象。当空气中有一物体时,其上每一点都可看成发光点,经球面折射后都会聚焦于某一对应的象点,这些象点就组成原来物作的象。1主轴上一点的成象: (1)上式表明,自s发出的光,只要是近轴的,不论a点的位置如何,都将聚焦于和o点相距v的s/点,s/点就是s点的象u称为物距,v称为象距(1

5、)式就是单球面的成象公式。在上面所讨论的情况中,u、v、r都取正值。有时,自s发出的光经球面折射后并不实际聚焦于一点,而是它们的延长线交于一点,如图(a)所示,这时的s/ 称为虚象,而把图中的s/ 称为实象,当s/ 为虚象时,它位于o点的左方,这时v为负值。有时,发光点s也会有类似虚象的情况,这时发光光束并不发自某一点,而是其延长线会聚于某一点s,如图(b)所示这时的发光点s称为虚物当s为虚物时,它位于o点的右方,这时u取负值同理,当球心c位于o点的左方时,球面半径r应取负值若球面的左边物质折射率为n1,右边物质折射率为n2,则公式(1)改写为:由(1)式,当时,v时,这时的物点称为物方焦点,

6、常用f表示,f与o点的距离称为物方焦距,用f表示。当u时,。这时的象点称为象方焦点,用f/表示,f/与o点的距离称为象方焦距,用f/表示,可得式:用焦距表示,物象公式可写成另一形式: (2)反射定律可看成折射定律在n=-1时的特例因此,球面反射镜的物象公式可从单球面折射成象公式得到。由于反射光的行进方向逆转,象距v和球面半径r的正、负规定应与折射时相反:s/、c在o点左方时v、r为正,s/、c在o点右方时v、r为负。于是,在公式(1)中令n=-1,v-v,r-r,即可得球面镜成象公式。对于凹面镜:对凸面镜,只要将r取负即可,因而凸面镜的焦距为负。2轴外一点的成象我们只考察在过s点与主轴垂直的平

7、面上离轴很近的点的情况,如图中的s1点,这时,s1点可近似看成仍在以c为球心、sc为半径的球面上,因而s1成象情况与s点相同,s1的象s1/必在以c为球心、以s/ c为半径的球面上。而且s1/点也必与s/ 点很靠近,因而s1/点可近似看成在过s且与主轴垂直的平面上,此平面称象平面,而称过s点与主轴垂直的平面为物平面。当物平面上存在ss1=y为高的物时,经球面折射后将在象平面上形成高为s1s1/=y/的象,s1/即在s1与c的连线的延长线上。象高y/与物高y之比称为放大率,当物或象在主轴上方时,y或y视为正,在主轴下方时,视为负k表示放大率,由图不难得到:代入上式即得球面镜放大率公式:当放大率为

8、正对物与象在主轴同侧(正立象)为负时,物与象在主轴异侧(倒立象)例1:如图所示的情况下,已知r=10厘米,n=1.5,物位于o点左方30厘米处,物高1.0厘米,求象的位置、大小和虚实。例3:一很薄的、部分反射的玻璃平板与一凸面镜相距b远,一点光源置于板前方距离a处,使它在部分反射的玻璃板中的象与它在镜中的像恰好重合。如果b=7.5cm,而凸面镜的焦距为f=-30cm,试求出a并作出光路图。六、薄透镜、两底面为共轴球面的圆盘形光学器件称为透镜,通常用玻璃制成厚度比直径小得多(也比球面半径小得多)的透镜称为薄透镜,边缘比中心薄的称为凸透镜,边缘比中心厚的称为凹透镜。 透镜实质上是两个单折射球面,因

9、而它也可以成象,它的成象过程就是在续两次的单球面成象过程我们下面就来讨论薄透镜的成象1主轴上一点的成象透镜两球面中心的连线称为主轴。如图中的ss/,设左球面的半经为r1。右球面半径为r2,透镜材料的折射率为n。 考察主轴上一点s的成象过程自s发出的近轴光经左球面折射后设成象于s”,由于透镜很薄。两球面顶点可视为一点,设为o 设 so=u ,os”=v/ 。原应成象于s/光束在尚未聚焦于s/ 前又被第二个球面折射。又第二次成象,这时s”成为物,是虚物,折射后设成象于s由(1)式得薄透镜成象公式: (3)这里u、v、r1、r2均有正,负,规则同上对图中所画的情况,u、v、r1均为正,r2为负根据(

10、3)式,当时,v,这时的物点称物方焦点,用f表示,f 与o点的距离称为物方焦距用f表示;当u时, 。这时的象点称象方焦点,用f表示,f与o的距离称象方焦距用f表示。当透镜两边处于同一媒质中(现均为空气)时,f=f。f和f/0的透镜称为会聚透镜,它能将平行光会聚于一点,由上式可知,当0时,f/0,是为会聚透镜,可以证明(薄)凸透镜必为会聚透镜。f和f/0的透镜称为发散透镜,它将使平行光成为发散光束。它们的延长线交于一点,当 0时,f0,是为发散透镜。可以证明(薄)凹透镜必为发散透镜。用焦距表示,可将透镜的成象公式写成更常用形式(当f=f/): (4)上式常称为高斯公式下图就是按高斯公式描制的uv

11、曲线,图(a)对会聚透镜而言,图(b)对发散透镜而言 当ff/时,高斯公式应写成:2轴外一点的成象过s点作与主轴垂直的平面(物平面),在此平面上靠近s 的任意点的成象与s点相仿,仍满足成象公式,其象必在过s/(s的象)点且垂直于主轴的平面(象平面)上,象的放大率可看成两次单球面成象放大率的乘积:由上式可见,象必在物点与o点的连线(或其延长线)上3牛顿公式透镜成象公式还可写成其他形式用物点s与物方焦点f的距离x 表示物的位置,v以物在焦点f左(右)方为正(负);用象点s与象方焦点f的距离x表示象的位置,x/以象在焦点f的右(左)方为正(负),如图所示,则有:u=x+f,v=x/+f/代入高斯公式并整理即得:xx/=ff。当f=f/时,上式变为:xx/=f2 利用牛顿公式还可将放大率写成:在f= f时,有:4作图法例1:对薄透镜而言,凸透镜必为会聚透镜,凹透

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论