




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2020-2021学年内蒙古乌兰察布市某校西校区体育班高一(上)期中数学试卷一、选择题(本题包括12小题,每小题5分,共60分.每小题有且只有一个正确答案) 1. 已知集合A=1,0,1,2,B=x|x21,则AB=() A.1,0,1B.0,1C.1,1D.0,1,2 2. 已知函数f(x)的定义域为3,4,在同一坐标系下,函数f(x)的图象与直线x3的交点个数是( ) A.0B.1C.2D.0或1 3. 函数f(x)=(x12)0+x+2的定义域为( ) A.(2,12)B.2,+)C.2,12)(12,+
2、)D.(12,+) 4. 下列与f(x)x表示同一个函数的是( ) A.f(x)|x|B.f(x)C.f(x)D. 5. 已知f(2x+1)4x2,则f(3)( ) A.36B.16C.4D.16 6. 已知函数y=f(x)在区间5,5上是增函数,那么下列不等式中成立的是( ) A.f(4)>f()>f(3)B.f()>f(4)>f(3)C.f(4)>f(3)>f()D.f(3)>f()>f(4) 7. 若函数f(x)2x2ax+5在区间1,+)上单调递
3、增,则a的取值范围是( ) A.(,2B.2,+)C.4,+)D.(,4 8. 函数yx22x1在闭区间0,3上的最大值与最小值的和是( ) A.1B.0C.1D.2 9. f(x)是定义在R上的奇函数,f(3)=2,则下列各点在函数f(x)图象上的是( ) A.(3,2)B.(3,2)C.(3,2)D.(2,3) 10. 已知y=f(x),x(a,a),F(x)=f(x)+f(x),则F(x)是( ) A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数 11. 若函数y(2a1)x(x是自
4、变量)是指数函数,则a的取值范围是( ) A.a>0且a1B.a0且a1C.a>且a1D.a 12. C D化为对数式为( )A B 二、填空题(本题包括4小题,每小题5分,共20分) 函数g(x)=x(2x)的递增区间是_ 已知函数f(x)是奇函数,当x(,0)时,f(x)x2+mx若f(2)3,则m的值为_ 已知3a+2b1,则_ lg2+lg50_ 三、解答题(本题包括6小题,共70分) 已知集合Ax|1x2,Bx|m+1x2m+3 (1)当m1时,求AB; (2)若BA,求实数m
5、的取值范围 计算下列各式的值 (1)-+; (2) 已知函数,x3,5 (1)判断函数f(x)的单调性,并证明; (2)若不等式f(x)>a在3,5上恒成立,求实数a的取值范围 设对于任意x,yR都有f(x+y)f(x)+f(y) (1)求f(0); (2)证明:f(x)是奇函数 已知函数f(x)=ax1(x0)的图象经过点(2,12),其中a>0且a1 (1)求a的值; (2)求函数y=f(x)+1(x0)的值域 求函数f(x)2x2+4x在t,t+2(t>0)上的最大值 参考答案与试题解析2020-2021学年内
6、蒙古乌兰察布市某校西校区体育班高一(上)期中数学试卷一、选择题(本题包括12小题,每小题5分,共60分.每小题有且只有一个正确答案)1.【答案】A【考点】交集及其运算【解析】解求出B中的不等式,找出A与B的交集即可【解答】解:因为A=1,0,1,2, B=x|x21=x|1x1,所以AB=1,0,1.故选A.2.【答案】B【考点】函数的图象与图象的变换【解析】根据函数的定义可得【解答】解 33,4,由函数定义,f(3)唯一确定,故只有一个交点(3,f(3))3.【答案】C【考点】函数的定义域及其求法【解析】根据函数成立的条件即可求函数的定义域【解答】解:要使函数有意义,则
7、x120,x+20,即x12,x2,即x2且x12,即函数的定义域为2,12)(12,+).故选C.4.【答案】D【考点】判断两个函数是否为同一函数【解析】根据两个函数的定义域相同,对应关系也相同,即可判断它们是同一函数【解答】对于A,f(x)|x|;与f(x)x,不是同一函数;对于B,f(x),x(,+),xR的定义域不同;对于C,f(x),xR,xR的对应关系不同;对于D,f(x),xR,xR的定义域相同,是同一函数5.【答案】B【考点】求函数的值函数的求值【解析】设2x+1t,则x,从而f(t)(t1)2,由此能求出f(3)【解答】 f(2x+1)4x2,设2x+6t,则x, f(t)7
8、×()4(t1)2, f(3)(31)7166.【答案】D【考点】函数单调性的性质【解析】根据f(x)在5,5上是增函数,所以比较4,3,3,4这几个数的大小即可得到对应函数值的关系【解答】解: f(x)在5,5上是增函数, A,<3, f()<f(3),所以该选项错误;B,<4, f()<f(4),所以该选项错误;C,3<, f(3)<f(),所以该选项错误;D,3>>4, f(3)>f()>f(4),所以该选项正确故选D7.【答案】D【考点】二次函数的性质二次函数的图象【解析】先求出函数f(x)2x2ax+5的单调增区间
9、,然后由题意知1,+)是它调增区间的子区间,利用对称轴与区间的位置关系即可解决【解答】函数f(x)2x2ax+6的单调增区间为,+),又函数f(x)2x6ax+5在区间1,+)上为单调递增函数,知5,+)是单调增区间的子区间, 1,则a的取值范围是a48.【答案】B【考点】二次函数的性质二次函数的图象【解析】函数yx22x1是一条以x1为对称轴,开口向上的抛物线,在闭区间0,3上先减后增,所以当x1时,函数取最小值;当x3时,函数取最大值,代入计算即可【解答】 yx22x1(x1)22 当x1时,函数取最小值2,当x3时,函数取最大值2 最大值与最小值的和为09.【答案】A【考点】函数奇偶性的
10、性质【解析】根据f(x)是定义在R上的奇函数,f(3)=2,可得:f(3)=2,进而得到答案【解答】解: f(x)是定义在R上的奇函数,f(3)=2, f(3)=2,故(3,2)在函数f(x)图象上.故选A.10.【答案】B【考点】函数单调性的判断与证明【解析】由于F(x)的定义域关于原点对称,且满足F(x)=F(x),可得F(x)是偶函数【解答】解: x(a,a),F(x)=f(x)+f(x), F(x)=f(x)+f(x)=F(x),故F(x)是偶函数,故选B11.【答案】C【考点】指数函数的定义、解析式、定义域和值域【解析】根据指数函数的定义,列出不等式组求出a的取值范围【解答】函数y(
11、2a1)x(x是自变量)是指数函数,则,解得a>且a1;所以a的取值范围是a|a>且a112.【答案】C【考点】指数式与对数式的互化【解析】直接化指数式为对数式后核对四个选项可得答案【解答】指数式axb化为对数式为:logabx,则化为对数式为,二、填空题(本题包括4小题,每小题5分,共20分)【答案】(,1【考点】二次函数的性质【解析】根据二次函数的图象即可求出其单调增区间【解答】解:g(x)=x(2x)=2xx2=(x1)2+1,其图象开口向下,对称轴为:x=1,所以函数的递增区间为:(,1故答案为:(,1【答案】【考点】函数奇偶性的性质与判断【解析】根据题意,由函数的解析式求
12、出f(2)的值,结合函数的奇偶性可得f(2)f(2)2m43,计算可得答案【解答】根据题意,当x(,f(x)x2+mx,则f(2)62m,又由f(x)是奇函数,且f(2)3,则f(8)f(2)3,则有46m3,解可得m,【答案】【考点】有理数指数幂的运算性质及化简求值【解析】根据指数幂的运算即可求出【解答】 3a+2b3, a+b原式3,【答案】2【考点】对数的运算性质【解析】直接利用对数的运算性质求解即可【解答】lg2+lg50lg2+lg5+1lg10+11+12三、解答题(本题包括6小题,共70分)【答案】当m1时,Bx|2x2, AB2; BA,则:当B时,即m+1>4m+3,符
13、合题意;当B时,要满足BA,则,综上所述,实数m的取值范围为:【考点】集合的包含关系判断及应用交集及其运算【解析】(1)m1时,可求出集合B,然后进行交集的运算即可;(2)根据BA可讨论B:B时,m+1>2m+3;B时,然后解出m的范围即可【解答】当m1时,Bx|2x2, AB2; BA,则:当B时,即m+1>4m+3,符合题意;当B时,要满足BA,则,综上所述,实数m的取值范围为:【答案】原式1+6;原式,【考点】有理数指数幂的运算性质及化简求值对数的运算性质【解析】(1)根据指数的运算性质即可求出(2)根据对数的运算性质即可求出【解答】原式1+6;原式,【答案】f(x)是3,5
14、上的单调减函数证明:设x4,x23,2且x1<x2,则f(x3)f(x2)1+-, x2x1>8, f(x1)f(x2)>3,即f(x1)>f(x2),则f(x)为2,5上的减函数;不等式f(x)>a在3,6上恒成立,等价为a<f(x)min,由f(x)在3,5递减minf(5),因此a<【考点】函数单调性的性质与判断函数恒成立问题【解析】(1)f(x)是3,5上的单调减函数运用单调性的定义证明,注意取值、作差和变形、定符号、下结论等步骤;(2)由题意可得a<f(x)min,由(1)的结论可得最小值,即可得到所求范围【解答】f(x)是3,5上的单
15、调减函数证明:设x4,x23,2且x1<x2,则f(x3)f(x2)1+-, x2x1>8, f(x1)f(x2)>3,即f(x1)>f(x2),则f(x)为2,5上的减函数;不等式f(x)>a在3,6上恒成立,等价为a<f(x)min,由f(x)在3,5递减minf(5),因此a<【答案】令x0,y0,故f(0)7,证明:令yx,代入得f(0)f(x)+f(x)f(x)f(x), f(x)为奇函数【考点】抽象函数及其应用函数奇偶性的性质与判断【解析】(1)令x0,y0,即可求出;(2)令yx,根据奇函数的定义即可证明【解答】令x0,y0,故f(0)7
16、,证明:令yx,代入得f(0)f(x)+f(x)f(x)f(x), f(x)为奇函数【答案】解:(1) 函数f(x)=ax1(x0)的图象经过点(2,12), a21=a=12,(2)由(1)得f(x)=(12)x1,(x0)函数为减函数,当x=0时,函数取最大值2,故f(x)(0,2, 函数y=f(x)+1=(12)x1+1(x0)(1,3,故函数y=f(x)+1(x0)的值域为(1,3【考点】指数函数的性质指数函数的图象【解析】(1)将点(2,12)代入函数f(x)=ax1(x0)的解析式,可得a的值;(2)结合指数函数的图象和性质,及x0,可得函数的值域【解答】解:(1) 函数f(x)=ax1(x0)的图象经过点(2,12), a21=a=12,(2)由(1)得f(x)=(12)x1,(x0)函数为减函数,当x=0时,函数取最大值2,故f(x)(0,2, 函数y=f(x)+1=(12)x1+1(x0)(1,3,故函数y=f(x)+1(x0)的值域为(1,3【答案】因为f(x)2x2+3x的开口向下,对称轴x1,当t1时,函数f(x)在t,函数的最大值为f(t)3t2+4t;当4<t<1时,函数f(x)在t,在1,函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江苏省镇江一中等中学2024-2025学年高三3月质量检测试题物理试题试卷含解析
- 四川省巴中市南江县重点名校2025届初三下学期第三次摸底:生物试题试卷含解析
- 江苏省余干县2024-2025学年初三第一次中考模拟统一考试生物试题含解析
- 江苏省南大附中2025年高三下学期期中考试历史试题理试题(普通班)含解析
- 山西航空职业技术学院《弦乐合奏》2023-2024学年第二学期期末试卷
- 网络公共服务平台在志愿者服务体系建设中的促进作用考核试卷
- 济职面试真题及答案
- 《建筑美学与结构设计》课件
- 岩石力学研究生课件
- 《高级建筑师》课件
- 保温隔热工程脚手架工程分包协议
- 劳务雇佣免责协议书范本两篇
- 非中医类别医师学习中医药专业知识管理办法(试行)
- 第20课 社会主义国家的发展与变化 课件历史下学期统编版(2019)必修中外历史纲要下
- 科学读书分享
- 2024年学校空调租赁服务条款
- 《基于涡激振动的阵列式压电风能采集系统》
- 先兆性早产的护理
- 幼儿园班本课程中班花样篮球
- 充电桩运营管理协议
- 设备吊装作业施工方案
评论
0/150
提交评论