




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、-作者xxxx-日期xxxx直线的一般式方程【精品文档】3.2.3 直线的一般式方程一、教学目标1.掌握直线方程的一般式,了解直角坐标系中直线与关于x和y的一次方程的对应关系,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.2.会将直线方程的特殊形式化成一般式,会将一般式化成斜截式和截距式,培养学生归纳、概括能力,渗透分类讨论、化归、数形结合等数学思想.3.通过教学,培养相互合作意识,培养学生思维的严谨性,注意学生语言表述能力的训练.二、重点难点教学重点:直线方程的一般式及各种形式的互化.教学难点:在直角坐标系中直线方程与关于x和y的一次方程的对应关系,关键是直线方程各
2、种形式的互化三、教学过程1、导入新课前面所学的直线方程的几种形式,有必要寻求一种更好的形式,那么怎样的形式才能表示一切直线方程呢?这节课我们就来研究这个问题.提出问题坐标平面内所有的直线方程是否均可以写成关于x,y的二元一次方程?关于x,y的一次方程的一般形式Ax+By+C=0(其中A、B不同时为零)是否都表示一条直线?我们学习了直线方程的一般式,它与另四种形式关系怎样,是否可互相转化?特殊形式如何化一般式?一般式如何化特殊形式?特殊形式之间如何互化?我们学习了直线方程的一般式Ax+By+C=0,系数A、B、C有什么几何意义?什么场合下需要化成其他形式?各种形式有何局限性?讨论结果:分析:在直
3、角坐标系中,每一条直线都有倾斜角.1°当90°时,它们都有斜率,且均与y轴相交,方程可用斜截式表示:y=kx+b.2°当=90°时,它的方程可以写成x=x1的形式,由于在坐标平面上讨论问题,所以这个方程应认为是关于x、y的二元一次方程,其中y的系数是零.结论1°:直线的方程都可以写成关于x、y的一次方程.分析:a当B0时,方程可化为y=-x-,这就是直线的斜截式方程,它表示斜率为-,在y轴上的截距为-的直线.b当B=0时,由于A、B不同时为零必有A0,方程化为x=-,表示一条与y轴平行或重合的直线.结论2°:关于x,y的一次方程都表示
4、一条直线.综上得:这样我们就建立了直线与关于x,y的二元一次方程之间的对应关系.我们把Ax+By+C=0(其中A,B不同时为0)叫做直线方程的一般式.注意:一般地,需将所求的直线方程化为一般式.在这里采用学生最熟悉的直线方程的斜截式(初中时学过的一次函数)把新旧知识联系起来.师生小结:特殊形式必能化成一般式;一般式不一定可以化为其他形式(如特殊位置的直线),由于取点的任意性,一般式化成点斜式、两点式的形式各异,故一般式化斜截式和截距式较常见;特殊形式的互化常以一般式为桥梁,但点斜式、两点式、截距式均能直接化成一般式.各种形式互化的实质是方程的同解变形(如图1).图1列表:形 式方程局限各常数的
5、几何意义点斜式y-y1=k(x-x1)除x=x0外(x1,y1)是直线上一个定点,k是斜率斜截式y=kx+b除x=x0外k是斜率,b是y轴上的截距两点式除x=x0和y=y0外(x1,y1)、(x2,y2)是直线上两个定点截距式=1除x=x0、y=y0及y=kx外a是x轴上的非零截距,b是y轴上的非零截距一般式Ax+By+C=0无当B0时,-是斜率,-是y轴上的截距思考探究:P98例题讲解: P98 例5、6知能训练:课本本节练习1、.拓展提升:名师金典P60 例1 P61 例2、例3.3.3 直线的交点坐标与距离公式 两条直线的交点坐标一、教学目标1.掌握两直线方程联立方程组解的情况与两直线不
6、同位置的对立关系,并且会通过直线方程系数判定解的情况,培养学生树立辩证统一的观点.2.当两条直线相交时,会求交点坐标.培养学生思维的严谨性,注意学生语言表述能力的训练.3.学生通过一般形式的直线方程解的讨论,加深对解析法的理解,培养转化能力.4.以“特殊”到“一般”,培养学生探索事物本质属性的精神,以及运动变化的相互联系的观点.二、重点难点教学重点:根据直线的方程判断两直线的位置关系和已知两相交直线求交点.教学难点:对方程组系数的分类讨论与两直线位置关系对应情况的理解.三、教学过程:1、导入新课思路1.作出直角坐标系中两条直线,移动其中一条直线,让学生观察这两条直线的位置关系.课堂设问:由直线
7、方程的概念,我们知道直线上的一点与二元一次方程的解的关系,那如果两直线相交于一点,这一点与这两条直线的方程有何关系?你能求出它们的交点坐标吗?说说你的看法.思路2.你认为该怎样由直线的方程求出它们的交点坐标?这节课我们就来研究这个问题.2、提出问题已知两直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,如何判断这两条直线的关系?如果两条直线相交,怎样求交点坐标?交点坐标与二元一次方程组有什关系?解下列方程组(由学生完成):(); (); ().如何根据两直线的方程系数之间的关系来判定两直线的位置关系?设两条直线的方程是l1:A1x+B1y+C1=0,l2:A2x+B2y+C2
8、=0,如果这两条直线相交,由于交点同时在这两条直线上,交点的坐标一定是这两个方程的唯一公共解,那么以这个解为坐标的点必是直线l1和l2的交点,因此,两条直线是否有交点,就要看这两条直线方程所组成的方程组是否有唯一解.()若二元一次方程组有唯一解,则l1与l2相交;()若二元一次方程组无解,则l1与l2平行;()若二元一次方程组有无数解,则l1与l2直线l1、l2联立得方程组 (代数问题) (几何问题)一般地,对于直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0(A1B1C10,A2B2C20),有方程组3、例题讲解:P103 例1、2,名师金典P63 例1、24、练习巩固:P
9、104 第1、2题5、作业:课本习题3.3 A组1、2、3,选做4题. 两点间的距离一、教学目标1.使学生掌握平面内两点间的距离公式及其推导过程;通过具体的例子来体会坐标法对于证明简单的平面几何问题的重要性.2.能灵活运用此公式解决一些简单问题;使学生掌握如何建立适当的直角坐标系来解决相应问题,培养学生勇于探索,善于发现,独立思考的能力以及不断超越自我的创新品质.二、重点难点教学重点:1、平面内两点间的距离公式.2、如何建立适当的直角坐标系.教学难点:如何根据具体情况建立适当的直角坐标系来解决问题.三、教学过程:1、导入新课思路1.已知平面上的两点P1(x1,y1),P2(x2,y2),如何求
10、P1(x1,y1),P2(x2,y2)的距离|P1P2|?思路2.(1)如果A、B是x轴上两点,C、D是y轴上两点,它们的坐标分别是xA、xB、yC、yD,那么|AB|、|CD|怎样求?(2)求B(3,4)到原点的距离.(3)设A(x1,y1),B(x2,y2),求|AB|.2、提出问题已知平面上的两点P1(x1,y1),P2(x2,y2),如何求P1(x1,y1),P2(x2,y2)的距离|P1P2|.图1 在直角坐标系中,已知两点P1(x1,y1)、P2(x2,y2),如图1,从P1、P2分别向x轴和y轴作垂线P1M1、P1N1和P2M2、P2N2,垂足分别为M1(x1,0)、N1(0,y1)、M2(x2,0)、N2(0,y2),其中直线P1N1和P2M2相交于点Q. 在RtP1QP2中,|P1P2|2=|P1Q|2+|QP2|2. 因为|P1Q|=|M1M2|=|x2-x1|,|QP2|=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医学术语速成宝典
- 企业级医疗实验室的信息化管理策略
- 医院感染控制与安全实践
- 家族性高甘油三酯血症的临床护理
- 老师育儿心得体会模版
- 《SPSS在教育统计中的应用-以PISA数据为例》全套教学课件
- 企业标志设计服务合同范例
- 医疗安全与隐私心理的双重保障策略
- 住宿场地出租合同范例
- 小兔吃饭安全课件
- 食堂食材配送服务方案及服务承诺
- 辅警培训工作方案
- 南京彭宇案完
- 《暖通空调自动控制》课件
- 警务保障各项管理制度
- 哮喘患者的护理常规 课件
- YB-4001.1-2007钢格栅板及配套件-第1部分:钢格栅板(中文版)
- 2023年国家重点支持的八大高新技术领域
- 养殖场兽医诊断与用药制度范本
- 12-漏缆卡具安装技术交底
- 《销售管理实务》(李宁)011-5 教案 第9课 编制销售预算
评论
0/150
提交评论