五相关与回归分析_第1页
五相关与回归分析_第2页
五相关与回归分析_第3页
五相关与回归分析_第4页
五相关与回归分析_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、统计学实验实习指导书  实验五 用EXCEL进行相关与回归分析 实验目的:用EXCEL进行相关与回归分析,并了解相关理论实验步骤:我们用下面的例子进行相关和回归分析:例1:10个学生身高和体重的情况如下:学生身高(公分)体重(公斤)1234567891017116717715416917516315217216053566449556652475850要求对身高和体重作相关和回归分析。 一、用EXCEL进行相关分析 首先把有关数据输入EXCEL的单元格中,如图13-24图13-24 EXCEL数据集用EXCEL进行相关分析有两种方法,一是利用相关系数函数

2、,另一种是利用相关分析宏。1利用函数计算相关系数在EXCEL中,提供了两个计算两个变量之间相关系数的方法,CORREL函数和PERSON函数,这两个函数是等价的,这里我们介绍用CORREL函数计算相关系数:第一步:单击任一个空白单元格,单击插入菜单,选择函数选项,打开粘贴函数对话框,在函数分类中选择统计,在函数名中选择CORREL,单击确定后,出现CORREL对话框。第二步:在array1中输入B2:B11,在array2中输入C2:C11,即可在对话框下方显示出计算结果为0.896。如图13-25所示:图13-25CORREL对话框及输入结果2用相关系数宏计算相关系数第一步:单击工具菜单,选

3、择数据分析选项,在数据分析选项中选择相关系数,弹出相关系数对话框,如图13-26所示:图13-26相关系数对话框第二步:在输入区域输入$B$1:$C$1,分组方式选择逐列,选择标志位于第一行,在输出区域中输入$E$1,单击确定,得输出结果如图13-27图13-27相关分析输出结果在上面的输出结果中,身高和体重的自相关系数均为1,身高和体重的相关系数为0.896,和用函数计算的结果完全相同。 二、用EXCEL进行回归分析 EXCEL进行回归分析同样分函数和回归分析宏两种形式,其提供了9个函数用于建立回归模型和预测。这9个函数分别是:INTERCEPT 返回线性回归模型的截距S

4、LOPE 返回线性回归模型的斜率RSQ 返回线性回归模型的判定系数FORECAST 返回一元线性回归模型的预测值STEYX 计算估计的标准误TREND 计算线性回归线的趋势值GROWTH 返回指数曲线的趋势值LINEST 返回线性回归模型的参数LOGEST 返回指数曲线模型的参数用函数进行回归分析比较麻烦,我们这里介绍使用回归分析宏进行回归分析。第一步:单击工具菜单,选择数据分析选项,出现数据分析对话框,在分析工具中选择回归,如图13-28 图13-28数据分析对话框    第二步:单击确定按钮,弹出回归对话框,在Y值输入区域输入$B$2:$B$11,在

5、X值输入区域输入$C$2:$C$11,在输出选项选择新工作表组,如图13-29所示:图13-29回归对话框    第四步:单击确定按钮,得回归分析结果如图13-30所示图13-30EXCEL回归分析结果在上面的输出结果中,第一部分为汇总统计,MultipleR指复相关系数,R Square指判定系数,Adjusted指调整的判定系数,标准误差指估计的标准误,观测值指样本容量;第二部分为方差分析,df指自由度,SS指平方和,MS指均方,F指F统计量,Significance of  F指p值;第三部分包括:Intercept指截距,Coefficient指

6、系数,t stat指t统计量。                      例2: 使用Excel数据分析工具进行多元回归分析使用Excel数据分析工具进行多元回归分析与简单的回归估算分析方法基本相同。 给出原始数据,自变量的值在A2:I21单元格区间中,因变量的值在J2:J21中,如下图所示: 假设回归估算表达式为: 试使用Excel数据分析工具库

7、中的回归分析工具对其回归系数进行估算并进行回归分析:点击“数据”工具栏中中的“数据分析”工具库,在弹出的“数据分析”-“分析工具”多行文本框中选择“回归”,然后点击 “确定”,如下图所示: 弹出“回归”对话框并作如下图的选择: 上述选择的具体方法是:在“Y值输入区域”,点击右侧折叠按钮,选取函数Y数据所在单元格区域J2:J21,选完后再单击折叠按钮返回;这过程也可以直接在“Y值输入区域”文本框中输入J2:J21;在“X值输入区域”,点击右侧折叠按钮,选取自变量数据所在单元格区域A2:I21,选完后再单击折叠按钮返回;这过程也可以直接在“X值输入区域”文本框中输入A2:I21

8、;置信度可选默认的95%。在“输出区域”如选“新工作表”,就将统计分析结果输出到在新表内。为了比较对照,我选本表内的空白区域,左上角起始单元格为K10.点击确定后,输出结果如下: 第一张表是“回归统计表”(K12:L17): 其中:Multiple R:(复相关系数R)R2的平方根,又称相关系数,用来衡量自变量x与y之间的相关程度的大小。本例R=0.9134表明它们之间的关系为高度正相关。(Multiple:复合、多种)R Square:复测定系数,上述复相关系数R的平方。用来说明自变量解释因变量y变差的程度,以测定因变量y的拟合效果。此案例中的复测定系数为0.8343,表

9、明用用自变量可解释因变量变差的83.43%Adjusted R Square:调整后的复测定系数R2,该值为0.6852,说明自变量能说明因变量y的68.52%,因变量y的31.48%要由其他因素来解释。( Adjusted:调整后的)标准误差:用来衡量拟合程度的大小,也用于计算与回归相关的其它统计量,此值越小,说明拟合程度越好观察值:用于估计回归方程的数据的观察值个数。第二张表是“方差分析表”:主要作用是通过F检验来判定回归模型的回归效果。该案例中的Significance F(F显著性统计量)的P值为0.00636,小于显著性水平0.05,所以说该回归方程回归效果显著,方程中至少有一个回归系数显著不为0.(Significance:显著)第三张表是“回归参数表”:K26:K35为常数项和b1b9的排序默认标示.L26:L35为常数项和b1b9的值,据此可得出估算的回归方程为:该表中重要的是O列,该列的O26:O35中的 P-value为回归系数t统计量的P

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论