版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高中数学选修精品教学资料课后提升作业 十五抛物线及其标准方程(45分钟70分)一、选择题(每小题5分,共40分)1.(2016·新乡高二检测)设动点c到点m(0,3)的距离比点c到直线y=0的距离大1,则动点c的轨迹是()a.抛物线b.双曲线c.椭圆d.圆【解析】选a.由题意,点c到m(0,3)的距离等于点c到直线y=-1的距离,所以点c的轨迹是抛物线.【补偿训练】(2016·济南高二检测)若动点p与定点f(1,1)和直线3x+y-4=0的距离相等,则动点p的轨迹是()a.椭圆b.双曲线c.抛物线 d.直线【解析】选d.由于点f(1,1)在直线3x+y-4=0上,故满足条件
2、的动点p的轨迹是一条直线.2.顶点在原点,焦点是f(0,3)的抛物线标准方程是()a.y2=21xb.x2=12yc.y2=112xd.x2=112y【解析】选b.由p2=3得p=6,且焦点在y轴正半轴上,故x2=12y.3.焦点在x轴上,且焦点到准线距离为2的抛物线的标准方程是()a.y2=4xb.y2=-4xc.y2=±2xd.y2=±4x【解析】选d.由抛物线标准方程中p的几何意义知p=2,焦点在x轴的抛物线开口向左,y2=-4x;开口向右,y2=4x.4.抛物线y=ax2的准线方程为y=-1,则实数a的值是()a.14b.12c.-14d.-12【解析】选a.由条件
3、知a0,则y=ax2可以变形为x2=1ay,由于准线是y=-1,可知a>0,抛物线标准方程可设为x2=2py(p>0),2p=1a,则p=12a,又由于-p2=-1,知p=2,所以12a=2,解得a=14,故选a.【补偿训练】抛物线y2=ax(a0)的焦点到其准线的距离是()a.|a|4b.|a|2c.|a|d.-a2【解析】选b.因为y2=ax,所以p=|a|2,即焦点到准线的距离为|a|2.5.(2016·大连高二检测)已知抛物线的顶点在原点,对称轴为x轴,焦点在双曲线x24-y22=1上,则抛物线方程为()a.y2=8xb.y2=4xc.y2=2xd.y2=
4、7;8x【解析】选d.由题意知抛物线的焦点为双曲线x24-y22=1的顶点,即为(-2,0)或(2,0),所以抛物线的方程为y2=8x或y2=-8x.6.已知抛物线y2=2px(p>0)的焦点为f,点p1(x1,y1),p2(x2,y2),p3(x3,y3)在抛物线上,且2x2=x1+x3,则有()a.|p1f|+|p2f|=|p3f|b.|p1f|2+|p2f|2=|p3f|2c.2|p2f|=|p1f|+|p3f|d.|p2f|2=|p1f|·|p3f|【解析】选c.因为p1,p2,p3在抛物线上,且2x2=x1+x3,两边同时加上p,得2x2+p2=x1+p2+x3+p2
5、.即2|p2f|=|p1f|+|p3f|.7.已知点a(2,0),抛物线c:x2=4y的焦点为f,射线fa与抛物线c相交于点m,与其准线相交于点n,则|fm|mn|=()a.25b.12c.15d.13【解题指南】利用射线fa的斜率和抛物线的定义求解.【解析】选c.射线fa的方程为x+2y-2=0(x0).由条件知tan=12,所以sin=55,由抛物线的定义知|mf|=|mg|,所以|fm|mn|=|mg|mn|=sin=55=15.8.(2016·重庆高二检测)o为坐标原点,f为抛物线c:y2=42x的焦点,p为c上一点,若|pf|=42,则pof的面积为()a.2b.22c.2
6、3d.4【解题指南】由|pf|=42及抛物线的定义求出点p的坐标,进而求出面积.【解析】选c.抛物线c的准线方程为x=-2,焦点f(2,0),由|pf|=42及抛物线的定义知,p点的横坐标xp=32,从而yp=±26,所以spof=12|of|·|yp|=12×2×26=23.二、填空题(每小题5分,共10分)9.(2016·泰安高二检测)已知动点p到点(3,0)的距离比它到直线x=-2的距离大1,则点p的轨迹方程为_.【解析】由题意可知点p到(3,0)的距离与它到x=-3的距离相等,故p的轨迹是抛物线,p=6,所以方程为y2=12x.答案:y
7、2=12x10.若抛物线y2=-2px(p>0)上有一点m,其横坐标为-9,它到焦点的距离为10,则点m的坐标为_.【解析】由抛物线方程y2=-2px(p>0),得其焦点坐标为f-p2,0,准线方程为x=p2,设点m到准线的距离为d,则d=|mf|=10,即p2-(-9)=10,所以p=2,故抛物线方程为y2=-4x.将m(-9,y)代入抛物线方程,得y=±6,所以m(-9,6)或m(-9,-6).答案:(-9,-6)或(-9,6)【补偿训练】(2015·皖南八校联考)若抛物线y2=2x上一点m到坐标原点o的距离为3,则点m到抛物线焦点的距离为_.【解析】设m(
8、x,y),则由y2=2x,x2+y2=3,得x2+2x-3=0.解得x=1或x=-3(舍).所以点m到抛物线焦点的距离d=1-12=32.答案:32三、解答题(每小题10分,共20分)11.(2016·吉林高二检测)已知动圆m与直线y=2相切,且与定圆c:x2+(y+3)2=1外切,求动圆圆心m的轨迹方程.【解题指南】设动圆圆心为m(x,y),半径为r,则由题意可得m到c(0,-3)的距离与到直线y=3的距离相等,则动圆圆心的轨迹是一条抛物线,其方程易求.【解析】设动圆圆心为m(x,y),半径为r,则由题意可得m到c(0,-3)的距离与到直线y=3的距离相等,则动圆圆心的轨迹是以c(
9、0,-3)为焦点,y=3为准线的一条抛物线,其方程为x2=-12y.12.(2016·邢台高二检测)如图所示,花坛水池中央有一喷泉,水管op=1m,水从喷头p喷出后呈抛物线状,先向上至最高点后落下,若最高点距水面2m,p距抛物线的对称轴1m,则水池的直径至少应设计为多少米?(精确到1m)【解题指南】以抛物线的顶点为原点,对称轴为y轴建立平面直角坐标系,则易得p点坐标,再由p在抛物线上求出抛物线方程,再由抛物线方程求出相关点坐标即可获解.【解析】如图所示,建立平面直角坐标系.设抛物线方程为x2=-2py(p>0).依题意有p(-1,-1)在此抛物线上,代入得p=12.故得抛物线方
10、程为x2=-y.又b在抛物线上,将b(x,-2)代入抛物线方程得x=2,即|ab|=2,则|ob|=|oa|+|ab|=2+1,因此所求水池的直径为2(1+2)m,约为5m,即水池的直径至少应设计为5m.【补偿训练】某隧道横断面由抛物线及矩形的三边组成,尺寸如图所示,某卡车空车时能通过此隧道,现载一集装箱,箱宽3米,车与箱共高4.5米,问此车能否通过此隧道?说明理由.【解析】建立如图所示的平面直角坐标系,则b(-3,-3),a(3,-3).设抛物线方程为x2=-2py(p>0),将b点的坐标代入,得9=-2p·(-3),所以p=32,所以抛物线方程为x2=-3y(-3y0).因为车与箱共高4.5米,所以集装箱上表面距抛物线形隧道拱顶0.5米.设抛物线上点d的坐标为(x0,-0.5),d的坐标为(-x0,-0.5),则x02=-3×(-0.5),解得x0=±32=±62.所以|dd|=2|x0|=6<3,故此车不能通过隧道.【能力挑战题】已知抛物线x2=4y,定点a(12,39),点p是此抛物线上的一动点,f是该抛物线的焦点,求|pa|+|pf|的最小值.【解析】将x=12代入x2=4y,得y=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 衡阳市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)附答案详解(基础题)
- 2026年福州市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)附答案详解
- 汉中市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)及答案详解(名师系列)
- 新余市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)含答案详解(达标题)
- 烟台市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)及答案详解(夺冠)
- 池州市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)及答案详解(基础+提升)
- 池州市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)附答案详解ab卷
- 2026年宣城市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)带答案详解
- 2026年沧州市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)含答案详解(突破训练)
- 桂林市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)附答案详解(b卷)
- 公路养护管理计划与执行报告
- 2025年城市地下综合管廊建设财务可持续性研究报告
- 6.2 学会依法办事 课件-2025-2026学年统编版道德与法治 八年级上册
- 2025江西南昌市青山湖区招聘社区工作者(专职网格员)45人考前自测高频考点模拟试题及参考答案详解一套
- 小学数学课标考试真题及答案
- (初级)小红书种草营销师认证考试真题试题(附答案)
- 预包装食品安全管理制度
- 基础生命体征解读
- 中国人民政协课件
- 腹痛科普课件
- 物流管理的毕业论文
评论
0/150
提交评论