


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、22.1.3二次函数ya(xh)2k的图象和性质第一课时一、教学目标1经历用描点法画出yax2k的图象的过程,通过分析、对比,使学生理解yax2k与yax2的图象的区别,掌握抛物线yax2k的有关性质2经历用描点法画出ya(xh)2的图象的过程,通过分析、对比,使学生初步理解ya(xh)2与yax2的图象的区别,掌握抛物线ya(xh)2的有关性质二、教学重难点重点:从图象平移变换的角度认识yax2k和ya(xh)2型二次函数的图象特征难点:平移变换的理解和确定,对学生画图和识图能力的培养教学过程(教学案)一、情境引入1.问题导入:同学们还记得一次函数y2x与y2x1的图象的关系吗?2.学生回忆
2、并说明3.教师引入:(1)你能由此推测二次函数yx2与yx21的图象之间的关系吗?那么yx2与yx22的图象之间又有何关系?(2)你能否猜测二次函数yx2,y(x2)2,y(x2)2的图象之间的关系吗?4.学生尝试猜想5.老师过渡:今天,我们一起来画图验证这个猜想是否成立二、互动新授 (一)二次函数yax2k的图象和性质1.教师指导学生动手作图: 在同一直角坐标系中,画出函数yx2,yx21与yx21的图象2.教师利用多媒体展示图象,学生观察引导学生思考:(1)抛物线yx21,yx21的开口方向、对称轴和顶点坐标各是什么?(2)抛物线yx21,yx21与抛物线yx2有什么关系吗?3.师生合作探
3、究得出:把抛物线yx2向上平移1个单位长度,就得到抛物线yx21;把抛物线yx2向下平移1个单位长度,就得到抛物线yx21.4.教学例25.课件出示第二个“思考”6.教师总结:形如yax2k的二次函数,它的图象的对称轴是y轴,顶点坐标是(0,k)抛物线yax2k可以由抛物线yax2向上(k>0)或向下(k<0)平移k个单位长度得到,简单地说,就是上加下减(二)二次函数ya(xh)2的图象和性质1.出示P33的“探究”(1)教师指导学生动手作图(2)观察图象,学生交流图象的特点2.出示P34的“思考” 师生合作探究:可以发现,把抛物线yx2向左平移1个单位长度,就得到抛物线y(x1)
4、2;把抛物线yx2向右平移1个单位长度,就得到抛物线y(x1)2.3. 出示P34“思考” 学生讨论交流,教师总结:形如ya(xh)2的二次函数,它的图象的对称轴是xh,顶点坐标是(h,0)抛物线ya(xh)2可以由抛物线yax2向右(h>0)或向左(h<0)平移h个单位长度得到简单地说,就是左加右减尤其要注意与yax2k的区别k前面是加号,h的前面是减号三、课堂小结四板书设计221.3二次函数ya(xh)2k的图象和性质第一课时1形如yax2k的二次函数,它的图象的对称轴是y轴,顶点坐标是(0,k)2形如ya(xh)2的二次函数,它的图象的对称轴是xh,顶点坐标是(h,0)五、教
5、学反思函数的图象和性质是函数学习的重要内容,指导学生发现二次函数的图象的特征,从而快速画出函数图象是本节课的重点虽然本课主要通过探究来学习二次函数的图象特征,但是从学生对函数图象的学习效果来看,学生对图象的平移容易产生混乱原因是不少学生不能理解为什么函数yax2k中,k是正的是向上平移,也就是向y轴的正方向平移,而函数ya(xh)2中,却写成xh.如果刻意去解释,学生可能会更混乱,教师在教学中强掉,k与纵坐标变化有关,h与横坐标变化有关就可以了另外一个原因是学生初次学习二次函数的图象的平移,容易产生混乱因此在探究这部分内容时,教师不要急于求成,要让学生通过自己画图,总结出图象的特征,从而得到函
6、数的性质导学案一、学法点津本课主要研究形如ya(xh)2与yax2k的二次函数图象的特征,通过画图操作,借助二次函数的图象发现二次函数的性质,理解它们是如何由二次函数yax2平移变换来的本课重点是抛物线的开口方向、对称轴、顶点坐标、增减性及最值并学会根据图象理解函数的性质,记忆函数的性质二、学点归纳总结1.知识要点总结二次函数ya(xh)2与二次函数yax2之间的关系二次函数yax2k与二次函数yax2之间的关系2.规律方法总结形如yax2k的二次函数,它的图象的对称轴是y轴,顶点坐标是(0,k)k的符号决定抛物线由yax2上下平移,简单地说,就是上加下减形如ya(xh)2的二次函数,它的图象的对称轴是xh,顶点坐标是(h,0)h的符号决定抛物线由yax2左右平移,简单地说,就是左加右减尤其要注意与yax2k的区别k前面是加号,h的前面是减号课时作业设计一、填空题1填表:yax2yax2kya(xh)2开口方向顶点对称轴最值增减性2.二次函数y3x22的最小值为_二、选择题3下列二次函数的开口方向向上的是()Ay3x21 Byax23 Cyx22 Dy(a1)x254顶点坐标为(2,0),开口方向和大小与抛物线yx2相同的解析式为()Ay(x2)2 By(x2)2Cy(x2)2 Dy(x2)25若二次函数y(3m6)x21的开口方向向下,则m的取值范围为()Am&g
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电瓶车保险相关知识培训课件
- 北京五年级考试数学题及答案
- 电焊工职业健康知识培训课件
- 高温防护安全知识培训课件
- 2-Ethyl-ss-ketobutiryl-SCoA-2-Ethyl-ss-ketobutiryl-coenzyme-A-生命科学试剂-MCE
- 新解读《GB-T 25122.1-2018轨道交通 机车车辆用电力变流器 第1部分:特性和试验方法》
- 会考物理考试题及答案
- 电焊学徒基础知识培训总结
- 保定动力技校考试题目及答案
- 蚌埠四中近期考试试卷及答案
- 工艺联锁(报警)管理制度
- GB∕T 9286-2021 色漆和清漆 划格试验
- DB35∕T 1844-2019 高速公路边坡工程监测技术规程
- 720全景照片制作方案及发布流程
- 工作责任心主题培训ppt课件(PPT 26页)
- 除尘器基础知识培训资料(54页)ppt课件
- 完整解读新版《英语》新课标2022年《义务教育英语课程标准(2022年版)》PPT课件
- 《国际商务(双语)》课程教学大纲
- 学术学位授权点学位授予基本标准编写指引
- 2011版义务教育生物课程标准word版
- 田湾核电站常规岛系统培训教材VVER
评论
0/150
提交评论