版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、实用文档 标准文案 第一讲 不规则图形面积的计算(一) 我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形.我们的面积及周长都有相应的公式直接计算.如下表: 实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。 那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。 例1 如右图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米.求阴影部分的面积。 解
2、:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形(ABG、BDE、EFG)的面积之和。 实用文档 标准文案 又因为S甲+S乙=12×12+10×10=244, 所以阴影部分面积=244-(50+132+12)=50(平方厘米)。 例2 如右图,正方形ABCD的边长为6厘米,ABE、ADF与四边形AECF的面积彼此相等,求三角形AEF的面积 . 解:因为ABE、ADF与四边形AECF的面积彼此相等,所以四边形AECF的面积与ABE、ADF的面积都等于正方形ABCD 在ABE中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2, ECF的面积为2&
3、#215;2÷2=2。 所以SAEF=S四边形AECF-SECF=12-2=10(平方厘米)。 例3 两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。如右图那样重合.求重合部分(阴影部分)的面积。 解:在等腰直角三角形ABC中 AB=10 实用文档 标准文案 EF=BF=AB-AF=10-6=4, 阴影部分面积=SABG-SBEF=25-8=17(平方厘米)。 例4 如右图,A为CDE的DE边上中点,BC=CD,若ABC(阴影部分)面积为5平方厘米.求ABD及ACE的面积 . 解:取BD中点F,连结AF.因为ADF、ABF和ABC等底、等高,所以它们的面积相等,都等于5平方
4、厘米. 所以ACD的面积等于15平方厘米,ABD的面积等于10平方厘米。 又由于ACE与ACD等底、等高,所以ACE的面积是15平方厘米。 例5 如下页右上图,在正方形ABCD中,三角形ABE的面积是8 平方厘 解:过E作BC的垂线交AD于F。 在矩形ABEF中AE是对角线,所以SABE=SAEF=8.在矩形CDFE中DE是对角线,所以SECD=SEDF。 例6 如右图,已知:SABC=1, 实用文档 标准文案 解:连结DF。 AE=ED, SAEF=SDEF;SABE=SBED, 例7 如下页右上图,正方形ABCD的边长是4厘米,CG=3厘米,矩形DEFG的长DG为5厘米,求它的宽DE等于多
5、少厘米? 解:连结AG,自A作AH垂直于DG于H,在ADG中,AD=4,DC=4(AD上的高). SAGD=4×4÷2=8,又DG=5, SAGD=AH×DG÷2, AH=8×2÷5=3.2(厘米), DE=3.2(厘米)。 实用文档 标准文案 例8 如右图,梯形ABCD的面积是45平方米,高6米,AED的面积是5平方米,BC=10米,求阴影部分面积 . 解:梯形面积=(上底+下底)×高÷2 即45=(AD+BC)×6÷2, 45=(AD+10)×6÷2, AD=45
6、5;2÷6-10=5米。 ADE的高是2米。 EBC的高等于梯形的高减去ADE的高,即6-2=4米, 例9 如右图,四边形ABCD和DEFG都是平行四边形,证明它们的面积相等. 证明:连结CE, ABCD的面积等于CDE面积的2倍,而 DEFG的面积也是CDE面积的2倍。 ABCD的面积与 DEFG的面积相等。 实用文档 标准文案 习题一 一、填空题(求下列各图中阴影部分的面积): 二、解答题: 1.如右图,ABCD为长方形,AB=10厘米,BC=6厘米,E、F分别为AB、AD中点,且FG=2GE.求阴影部分面积。 2.如右图,正方形ABCD与正方形DEFG的边长分别为12厘米和6厘
7、米.求四边形CMGN(阴影部分)的面积 . 3.如右图,正方形ABCD的边长为5厘米,CEF的面积比ADF的面积大5平方厘米.求CE的长。 实用文档 标准文案 4.如右图,已知CF=2DF,DE=EA,三角形BCF的面积为2,四边形BEDF的面积为4.求三角形ABE的面积 . 5.如右图,直角梯形ABCD的上底BC=10厘米,下底AD=14厘米,高CD5厘米.又三角形ABF、三角形BCE和四边形BEDF的面积相等。求三角形DEF的面积 . 6.如右图,四个一样大的长方形和一个小的正方形拼成一个大正方形,其中大、小正方形的面积分别是64平方米和9平方米.求长方形的长、宽各是多少? 7.如右图,有
8、一三角形纸片沿虚线折叠得到右下图,它的面积与原三角形面积之比为2:3,已知阴影部分的面积为5平方厘米.求原三角形面积 . 8. 如右图,ABCD的边长BC=10,直角三角形BCE的直角边EC长8,已知阴影部分的面积比EFG的面积大10.求CF的长 . 实用文档 标准文案 习题一解答 一、填空题: 二、解答题: 3CE=7厘米 实用文档 标准文案 可求出BE=12所以CE=BE-5=7厘米 43提示:加辅助线 BD CE=4,DE=CD-CE=5-4=1。 同理AF=8,DF=AD-AF=14-8=6, 6如右图,大正方形边长等于长方形的长与宽的和.中间小正方形的边长等于长方形的长与宽的差.而大
9、、小正方形的边长分别是8米和3米,所以长方形的宽为(8-3)÷2=2.5(米),长方形的长为8-2.5=5.5(米) . 715平方厘米解:如右图,设折叠后重合部分的面积为x 平方厘米, x=5所以原三角形的面积为2×5+5=15平方厘米 阴影部分面积是:10x-40SGEF 实用文档 标准文案 由题意:SGEF10=阴影部分面积, 10x-40=10,x5(厘米) . 实用文档 标准文案 第五讲 同余的概念和性质 你会解答下面的问题吗? 问题1:今天是星期日,再过15天就是“六·一”儿童节了,问“六·一”儿童节是星期几? 这个问题并不难答.因为,一个星
10、期有7天,而15÷7=21,即157×2+1,所以“六·一”儿童节是星期一。 问题2:1993年的元旦是星期五,1994年的元旦是星期几? 这个问题也难不倒我们.因为,1993年有365天,而365=7×52+1,所以1994年的元旦应该是星期六。 问题1、2的实质是求用7去除某一总的天数后所得的余数.在日常生活中,时常要注意两个整数用某一固定的自然数去除,所得的余数问题.这样就产生了“同余”的概念.如问题1、2中的15与365除以7后,余数都是1,那么我们就说15与365对于模7同余。 同余定义:若两个整数a、b被自然数m除有相同的余数,那么称a、b对
11、于模m同余,用式子表示为: ab(modm). (*) 上式可读作: a同余于b,模m。 同余式(*)意味着(我们假设ab): a-b=mk,k是整数,即m(a-b). 例如:15365(mod7),因为365-15=350=7×50。 5620(mod9),因为56-20=369×4。 900(mod10),因为90-090=10×9。 由例我们得到启发,a可被m整除,可用同余式表示为:a0(modm)。 例如,表示a是一个偶数,可以写 a0(mod 2) 表示b是一个奇数,可以写 b1(mod 2) 实用文档 标准文案 补充定义:若 m(a-b),就说a、b对
12、模m不同余,用式子表示是: ab(modm) 我们书写同余式的方式,使我们想起等式,而事实上,同余式与等式在其性质上相似.同余式有如下一些性质(其中a、b、c、d是整数,而m是自然数)。 性质1:aa(mod m),(反身性) 这个性质很显然.因为a-a=0=m·0。 性质2:若ab(mod m),那么ba(mod m),(对称性)。 性质3:若ab(mod m),bc(mod m),那么ac(mod m),(传递性)。 性质4:若ab(mod m),cd(mod m),那么a±cb±d(mod m),(可加减性)。 性质5:若ab(mod m),cd(mod m
13、),那么acbd(mod m)(可乘性)。 性质6:若ab(mod m),那么anbn(mod m),(其中n为自然数)。 性质7:若acbc(mod m),(c,m)=1,那么ab(mod m),(记号(c,m)表示c与m的最大公约数)。 注意同余式性质7的条件(c,m)1,否则像普通等式一样,两边约去,就是错的。 例如610(mod 4),而 35(mod 4),因为(2,4)1。 请你自己举些例子验证上面的性质。 同余是研究自然数的性质的基本概念,是可除性的符号语言。 例1 判定288和214对于模37是否同余,74与20呢? 解:288-214=74=37×2。 288214
14、(mod37)。 74-20=54,而 3754, 7420(mod37)。 例2 求乘积418×814×1616除以13所得的余数。 分析 若先求乘积,再求余数,计算量太大.利用同余的性质可以使“大数化小”,减少计算量。 实用文档 标准文案 解:4182(mod13), 8148(mod13),16164(mod13), 根据同余的性质5可得: 418×814×16162×8×46412(mod13)。 答:乘积418×814×1616除以13余数是12。 例3 求14389除以7的余数。 分析 同余的性质能使“
15、大数化小”,凡求大数的余数问题首先考虑用同余的性质化大为小.这道题先把底数在同余意义下变小,然后从低次幂入手,重复平方,找找有什么规律。 解法1:1433(mod7) 14389389(mod 7) 8964+16+8+1 而322(mod 7), 344(mod7), 38162(mod 7), 3164(mod 7), 332162(mod 7), 3644(mod 7)。 389364·316·38·34×4×2×35(mod 7), 143895(mod 7)。 答:14389除以7的余数是5。 解法2:证得14389389(
16、mod 7)后, 3632×342×41(mod 7), 384(36)141(mod 7)。 389384·34·31×4×35(mod 7)。 143895(mod 7)。 实用文档 标准文案 例4 四盏灯如图所示组成舞台彩灯,且每30秒钟灯的颜色改变一次,第一次上下两灯互换颜色,第二次左右两灯互换颜色,第三次又上下两灯互换颜色,这样一直进行下去.请问开灯1小时四盏灯的颜色如何排列? 分析 与解答经观察试验我们可以发现,每经过4次互换,四盏灯的颜色排列重复一次,而1小时=60分钟=120×30秒,所以这道题实质是求120
17、除以4的余数,因为1200(mod 4),所以开灯1小时四盏灯的颜色排列刚好同一开始一样。 十位,上的数码,再设M=a0a1an,求证:NM(mod 9)。 分析 首先把整数N改写成关于10的幂的形式,然后利用101(mod 9)。 又 11(mod 9), 101(mod 9), 1021(mod 9), 10n1(mod 9), 上面这些同余式两边分别同乘以a0、a1、a2、an,再相加得: a0a1×10+a2×102+an×10n a0a1a2an(mod 9), 即 NM(mod 9). 这道例题证明了十进制数的一个特有的性质: 任何一个整数模9同余于它
18、的各数位上数字之和。 实用文档 标准文案 以后我们求一个整数被9除的余数,只要先计算这个整数各数位上数字之和,再求这个和被9除的余数即可。 例如,求1827496被9除的余数,只要先求(1+827496),再求和被9除的余数。 再观察一下上面求和式.我们可以发现,和不一定要求出.因为和式中18,2+7,9被9除都余0,求余数时可不予考虑.这样只需求46被9除的余数.因此,1827496被9除余数是1。 有人时常利用十进制数的这个特性检验几个数相加、相减、相乘的结果对不对,这种检查方法叫:弃九法。 弃九法最经常地是用于乘法.我们来看一个例子。 用弃九法检验乘式5483×91174988
19、8511是否正确? 因为 54835483112(mod 9), 911791170(mod 9), 所以 5483×91172×00(mod 9)。 但是 498885114+98+8+85+1+1 8(mod9), 所以 5483×911749888511,即乘积不正确。 要注意的是弃九法只能知道原题错误或有可能正确,但不能保证一定正确。 例如,987598+7+52(mod 9), 487348734(mod 9), 324756893+2+4+75+6+8+9 8(mod 9), 这时,9875×48732×432475689(mod
20、9)。 但观察个位数字立刻可以判定9875×487332475689.因为末位数字5和3相乘不可能等于9。 弃九法也可以用来检验除法和乘方的结果。 例6 用弃九法检验下面的计算是否正确: 实用文档 标准文案 23372458÷73123544。 解:把除式转化为: 3544×731223372458。 354435447(mod 9), 731273124(mod 9), 3544×73127×41(mod 9), 但 2337245823387(mod 9)。 而 17(mod 9) 3544×731223372458, 即 233
21、72458÷73123544。 例7 求自然数210031014102的个位数字。 分析 求自然数的个位数字即是求这个自然数除以10的余数问题。 解:210024×256256(mod 10), 310134×25·31125·313(mod 10), 4102(22)100·426·66(mod 10), 2100310141026365(mod 10), 即自然数210031014102的个位数字是5. 习题五 1.验证对于任意整数a、b,式子ab(mod1)成立,并说出它的含义。 2.已知自然数a、b、c,其中c3,a
22、除以c余1,b除以c余2,则ab除以c余多少? 3.1993年的六月一日是星期二,这一年的十月一日是星期几? 4.求3333555555553333被7除的余数。 5.所有自然数如下图排列.问300位于哪个字母下面? 实用文档 标准文案 6.数,被13除余多少?(提示:先试除,可知13|111111,而19931(mod 6)。 7.用弃九法检验下面运算是否正确: 845×372=315340; 12345×67891=838114385; 1144192613÷2899739459。 8.求1993100的个位数字. 习题五解答 1.例:1|a-b,23(mod
23、 1),715(mod 1),式子ab(mod 1)的含义是:任意整数a、b对模1同余.整数是模1的同余类。 2.解:a1(mod c),b2(mod c), ab2(mod c) 即ab除以c余2。 3.1993年的十月一日是星期五。 4.解: 33331(mod 7), 333355551(mod 7)。 又 55554(mod 7), 5555333343333(mod 7)。 而 431(mod 7), 43333(43)11111(mod 7), 33335555+555533331+12(mod 7), 即 3333555555553333被7除余2。 实用文档 标准文案 5.解:
24、 3006(mod 7)。 300与6在同一列,在D下面。 6.答:余1。 7.不正确; 不正确; 不正确。 8.1. 第四讲 最大公约数和最小公倍数 本讲重点解决与最大公约数和最小公倍数有关的另一类问题有关两个自然数.它们的最大公约数、最小公倍数之间的相互关系的问题。 定理1 两个自然数分别除以它们的最大公约数,所得的商互质.即如果(a,b)=d,那么(a÷d,b÷d)1。 证明:设a÷d=a1,b÷d=b1,那么aa1d,b=b1d。 假设(a1,b1)1,可设(a1,b1)m(m1),于是有a1=a2m,b1b2m.(a2,b2是整数) 所以a=a
25、1da2md,bb1db2md。 那么md是a、b的公约数。 又m1,mdd。 这就与d是a、b的最大公约数相矛盾.因此,(a1,b1)1的假设是不正确的.所以只能是(a1,b1)=1,也就是(a÷d,b÷d)1。 定理2 两个数的最小公倍数与最大公约数的乘积等于这两个数的乘积.(证明略) 定理3 两个数的公约数一定是这两个数的最大公约数的约数.(证明略) 下面我们就应用这些知识来解决一些具体的问题。 例1 甲数是36,甲、乙两数的最大公约数是4,最小公倍数是288,求乙数. 解法1:由甲数×乙数=甲、乙两数的最大公约数×两数的最小公倍数,可得 36
26、215;乙数=4×288, 实用文档 标准文案 乙数=4×288÷36, 解出 乙数=32。 答:乙数是32。 解法2:因为甲、乙两数的最大公约数为4,则甲数=4×9,设乙数=4×b1,且(b1,9)=1。 因为甲、乙两数的最小公倍数是288, 则 2884×9×b1, b1288÷36, 解出 b18。 所以,乙数=4×8=32。 答:乙数是32。 例2 已知两数的最大公约数是21,最小公倍数是126,求这两个数的和是多少? 解:要求这两个数的和,我们可先求出这两个数各是多少.设这两个数为a、b,ab。
27、 因为这两个数的最大公约数是21,故设a=21a1,b21b1,且(a1,b1)1。 因为这两个数的最小公倍数是126, 所以 126=21×a1×b1, 于是 a1×b1=6, 因此,这两个数的和为21126=147,或4263=105。 答:这两个数的和为147或105。 例3 已知两个自然数的和是50,它们的最大公约数是5,求这两个自然数。 实用文档 标准文案 解:设这两个自然数分别为a与b,ab.因为这两个自然数的最大公约数是5,故设a=5a1,b=5b1,且(a1,b1)=1,a1b1。 因为 ab=50, 所以有5a1+5b1=50, a1+b1=10
28、。 满足(a1,b1)=1,a1b1的解有: 答:这两个数为5与45或15与35。 例4 已知两个自然数的积为240,最小公倍数为60,求这两个数。 解:设这两个数为a与b,ab,且设(a,b)d,ada1,bdb1,其中(a1,b1)1。 因为两个自然数的积=两数的最大公约数×两数的最小公倍数, 所以 240=d×60, 解出 d4, 所以 a=4a1,b=4b1. 因为a与b的最小公倍数为60, 所以 4×a1×b160, 于是有 a1×b115。 答:这两个数为4与60或12与20。 实用文档 标准文案 例5 已知两个自然数的和为54,它
29、们的最小公倍数与最大公约数的差为114,求这两个自然数。 解:设这两个自然数分别为a与b,ab,(a,b)d,ada1,bdb1,其中(a1,b1)1。 因为a+b54,所以da1+db1=54。 于是有d×(a1b1)54,因此,d是54的约数。 又因为这两个数的最小公倍数与最大公约数的差为114, 所以da1b1-d=114, 于是有d×(a1b1-1)=114, 因此,d是114的约数。 故d为54与114的公约数。 由于(54,114)6,6的约数有:1、2、3、6,根据定理3,d可能取1、2、3、6这四个值。 如果d1,由d×(a1+b1)54,有a1b
30、1=54;又由d×(a1b1-1)114,有a1b1=115。 115=1×115=5×23,但是1115=11654,523=2854,所以d1. 如果d2,由d×(a1b1)54,有a1+b1=27;又由d×(a1b1-1)=114,有a1b1=58。 581×582×29,但是1585927,2+293127,所以d2。 如果d=3,由d×(a1b1)=54,有a1+b118;又由d×(a1b1-1)=114,有a1b1=39。 391×393×13,但是1394018,3131
31、618,所以d3。 如果d=6,由d×(a1b1)=54,有a1b1=9;又由d×(a1b1-1)=114,有a1b1=20。 20表示成两个互质数的乘积有两种形式:20=1×204×5,虽然120=219,但是有459,所以取d6是合适的,并有a1=4,b15。 a6×424,b6×530。 答:这两个数为24和30。 例6 已知两个自然数的差为4,它们的最大公约数与最小公倍数的积为252,求这两个自然数。 解:设这两个自然数分别为a与b,且ab,ada1,b=db1,(a1,b1)1。 实用文档 标准文案 因为a-b=4,所以da
32、1-db1=4,于是有d×(a1-b1)=4,因此d为4的约数。 因为这两个自然数的最大公约数与最小公倍数的积为252,所以d×da1b1252,于是有d2×a1b1=(2×3)2×7,因此d为2×3的约数。 故d为4与2×3的公约数。 由于(4,2×3)2,2的约数有1和2两个,所以d可能取1、2这两个值。 如果d=1,由d×(a1-b1)=4,有a1-b1=4;又由d2×a1b1=252,有a1b1=252。 252表示成两个互质数的乘积有4种形式:252=1×252=4×
33、;63=7×369×28,但是252-12514,63-4594,36-7=294,28-9194,所以d1。 如果d=2,由d×(a1-b1)=4,有a1-b1=2;又由d2×a1b1252,有a1b1=63。 63表示为两个互质数的乘积有两种形式:631×63=7×9,但63-1622,而9-72,且(9,7)=1,所以d=2,并且a19,b17。 因此a=2×918,b2×714。 答:这两个数为18和14。 在例2例5的解答中之所以可以在假设中排除a=b这种情形(在各例中都只假设了ab),分别是由于:例2和
34、例5,若ab,则(a,b)a,ba,与条件(a,b)a,b矛盾;例3,若a=b,则ab=(a,b)=5,因此ab1050,与条件矛盾;例4,a×b=240不是平方数。 从例题的解答中可以看出,在处理涉及两数的最大公约数或者最小公倍数的很多问题中,经常用到的基本关系是:若两数为a、b,那么a=a1d,bb1d,其中d=(a,b),(a1,b1)1,因此a,bda1b1,有时为了确定起见,可设ab.对于很多情形,可以排除a=b的情形(如上述所示),而只假设ab. 习题四 1.已知某数与24的最大公约数为4,最小公倍数为168,求此数。 2.已知两个自然数的最大公约数为4,最小公倍数为12
35、0,求这两个数。 3.已知两个自然数的和为165,它们的最大公约数为15,求这两个数。 4.已知两个自然数的差为48,它们的最小公倍数为60,求这两个数。 5.已知两个自然数的差为30,它们的最小公倍数与最大公约数的差为450,求这两个自然数。 6.已知两个自然数的平方和为900,它们的最大公约数与最小公倍数的乘积为432,求这两个自然数. 实用文档 标准文案 习题四解答 1.此数为28。 2.这两个数为4与120,或8与60,或12与40,或20与24。 3.所求的两个数为15与150,或30与135,或45与120,或60与105,或75与90。 4.所求的两个数为60与12。 5.所求的
36、两个数为41与11,或65与35。 6.解:设所求的两个自然数为a、b,且ab,a=da1,b=db1,(a1,b1)1,a1b1。 由所给的条件得到 两式相除得 由于 (12,25)1, 因此 a1=3,b14。 得 d6。 所以a=18,b=24。 经检验,18、24为所求。 答:这两个自然数为18与24. 第八讲 时钟问题 实用文档 标准文案 时钟问题是研究钟面上时针和分针关系的问题.钟面的一周分为60格 . 也存在着不少的学问.这里列出一个基本公式:在初始时刻需追赶的格数 ÷ 格数。 例1 现在是3点,什么时候时针与分针第一次重合? 分析 3点时分针指12,时针指3.分针在时
37、针后5×315(个)格 . 例2 在10点与11点之间,钟面上时针和分针在什么时刻垂直? 分析 分两种情况进行讨论。 在顺时针方向上分针与时针成270°角: 实用文档 标准文案 在顺时针方向上当分针与时针成270°时,分针落后时针60×(270÷360)=45(个)格,而在10点整时分针落后时针5×10=50(个)格.因此,在这段时间内,分针要比时针多走50-45=5(个)格,而每分钟分针 在顺时针方向上分针与时针成90°角: 在顺时针方向上当分针与时针成90°角时,分针落后时针60×(90÷3
38、60)=15(个)格,而在10点整时分针落后时针5×10=50(个)格,因此在这段时间内,分针要比时针多走50-15=35(个)格,所以到达这一时 解:在顺时针方向上当分针与时针成270°角时: 在顺时针方向上当分针与时针成90°角时: 例3 在9点与10点之间的什么时刻,分针与时针在一条直线上? 分析 分两种情况进行讨论。 分针与时针的夹角为180°角: 当分针与时针的夹角为180°角时,分针落后时针60×(180÷360)=30(个)格,而在9点整时,分针落后时针5×9=45(个)格.因此,在这段时间内分针要比
39、时针多走45-30=15(个)格,而每分钟分针比时针多走 实用文档 标准文案 (分钟)。 分针与时针的夹角为0°,即分针与时针重合: 9点整时,分针落后时针5×9=45(个)格,而当分针与时针重合时,分针要比时针多走45个格,因此到达这一时刻所用的时间为:45÷ (1- 解:当分针与时针的夹角为180°角时: 当分针与时针的夹角为0°即分针与时针重合时: 例4 小明在7点与8点之间解了一道题,开始时分针与时针正好成一条直线,解完题时两针正好重合,小明解题的起始时间?小明解题共用了多少时间? 分析 要求小明解题共用了多少时间,必须先求出小明解题开
40、始时是什么时刻,解完题时是什么时刻。 小明开始解题时的时刻: 因为小明开始解题时,分针与时针正好成一条直线,也就是分针与时针的夹角为180°,此时分针落后时针60×(180÷360)=30(个)格,而7点整时分针落后时针5×735(个)格,因此在这段时间内分针要比时 实用文档 标准文案 小明解题结束时的时刻: 因为小明解题结束时,两针正好重合,那么从7 点整到这一时刻分针要 这样小明解题所用的时间就可以求出来了。 解:先求小明开始解题的时刻: 再求小明结束解题的时刻: 最后求小明解题所用的时间: 例5 一只钟的时针与分针均指在4与6之间,且钟面上的“5”
41、字恰好在时针与分针的正中央,问这时是什么时刻? 分析 由于现在可以是4点多,也可以是5点多,所以分两种情况进行讨论: 先设此时是4点多: 4点整时,时针指4,分针指12.从4点整到现在“5在时针与分针的正中央”,分针走的格数多于25,少于30,时针走不足5格.由于5到分针的格数等于5到时针的格数,所以时针与分针在这段时间内共走30格.又由于 实用文档 标准文案 再设此时是5点多: 5点整时,时针指5,分针指12.从5点整到现在“5在时针与分针的正中央”,分针走的格数多于20格少于25格,时针走的格数不足5格,由于5到分针的格数等于5到时针的格数,所以时针与分针在这段时间内共走25格.因此,从5
42、点整到上页图(b)钟面上 解:如果此时是4点多,则从4点整到上页图(a)钟面上这种状态 如果此时是5点多,则从5点整到上页图(b)钟面上这种状态共用: 例6 一只旧钟的分钟和时针每65分钟(标准时间的65分钟)重合一次.问这只旧钟一天(标准时间24小时)慢或快几分钟? 实用文档 标准文案 分钟重合一次,显然旧钟快.本题的难点在于从旧钟两针的重合所耗用的65标准分钟推算出旧钟时针或分针的旋转速度(每标准分钟旋转多少格),进而推算出旧钟的针24标准小时旋转多少格,它与标准钟的针用24标准小时所走的格数的差就是旧钟钟面上显示的比标准钟快的时间读数。 单位表示:旧钟分针速度为x(格/标准分).旧钟分针
43、走60格时针走5格, 耗用65标准分钟,而且两次重合之间分针赶超了时针 标准时间一天有60×24=1440标准分,一天内旧钟分针走的格数为: 标准分钟数.并非标准的分钟数。 解:设这只旧钟的分针用标准时间1分钟走x格,则旧钟的时针速度为 根据旧钟的时针与分针每重合一次耗用65标准分钟,列方程得:60÷ 实用文档 标准文案 标准时间一天有60×24标准分,标准时间一天内旧钟分针走的格数为: 这只旧钟的分针标准时间一天所走的格数与标准钟分针一天走的格数差为: 习题八 1.在6点和7点之间,两针什么时刻重合? 2.现在是2点15分,再过几分钟,时针和分针第一次重合? 3.2点钟以后,什么时刻分针与时针第一次成直角? 4.在7点与8点之间(包含7点与8点)的什么时刻,两针之间的夹角为120°? 5.在10点与11点之间,两针在什么时刻成一条直线? 6.一旧钟钟面上的两针每66分钟重合一次,这只旧钟在标准时间的一天中快或慢几
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025四季度重庆五一职业技术学院合同工招聘24人参考考试试题及答案解析
- 2026中国农业科学院第一批统一招聘14人(蔬菜花卉研究所)笔试重点试题及答案解析
- 2025年无人机空中交通管理报告
- 2025-2026 学年四年级 道德与法治 期末冲刺卷 试卷及答案
- 2025年齐齐哈尔市总工会工会社会工作者招聘39人考试核心题库及答案解析
- 2025年眉山市青神县人民法院公开招聘劳务派遣司法警察的备考题库及答案详解1套
- 2025四川自贡市第一人民医院招聘食堂工人8人备考核心试题附答案解析
- 2025年儿童安全教育游戏化五年开发报告
- 2026年长沙市中小学素质教育实践基地岳麓营地编外合同制教师、教官招聘备考题库及参考答案详解
- 2025广西南宁市武鸣区陆斡中心卫生院招聘编外工作人员1人考试核心题库及答案解析
- 2025年信用报告征信报告详版个人版模板样板(可编辑)
- 工业级无人机农业喷洒技术操作规程
- 雅马哈电子琴KB-200说明书
- 【2025年】天翼云解决方案架构师认证考试笔试卷库下(多选、判断题)含答案
- 临床预防呼吸机相关肺炎(VAP)的集束化管理策略
- 钻探安全培训
- 胸闷诊断与鉴别要点
- 数字化劳动教育:现状分析与优化策略研究
- 政协提案范文标准模板
- (2025年标准)酒水行业合伙协议书
- 2025教育考试院考务人员网上培训试题(附答案)
评论
0/150
提交评论