D653高斯公式课件_第1页
D653高斯公式课件_第2页
D653高斯公式课件_第3页
D653高斯公式课件_第4页
D653高斯公式课件_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、D653高斯公式PPT课件第六节Green Gauss 推广推广一、高斯公式一、高斯公式二、通量与散度二、通量与散度 机动 目录 上页 下页 返回 结束 高斯公式 通量与散度 第六章 D653高斯公式PPT课件一、高斯一、高斯 ( Gauss ) 公式公式定理定理1. 设空间闭区域 由分片光滑的闭曲 上有连续的一阶偏导数 ,zyxzRyQxPdddyxRxzQzyPdddddd zyxzRdddyxRdd 下面先证:函数 P, Q, R 在面 所围成, 的方向取外侧, 则有 高斯 目录 上页 下页 返回 结束 D653高斯公式PPT课件231zyxyxD) ,(yxRyxyxRdd) ,(,

2、),(:11yxzz 证明证明: 设yxDyxyxzyxzyxz),(, ),(),(),(:21,321zzRyxzyxzd),(),(21yxD),(2yxz),(1yxzyxRdd yxD2 zyxzRdddyxdd1 3yxRdd为XY型区域 , ),(:22yxzz 则yxyxRdd) ,(yxDyxD),(2yxzyxyxRdd) ,(),(1yxz定理1 目录 上页 下页 返回 结束 D653高斯公式PPT课件所以zyxzRdddyxRdd 若 不是 XY型区域 , 则可引进辅助面将其分割成若干个 XY型区域,故上式仍成立 .正反两侧面积分正负抵消,在辅助面类似可证 zyxyQd

3、ddyxRxzQzyPdddddd zyxzRyQxPdddxzQdd zyxxPdddzyPdd 三式相加, 即得所证 Gauss 公式:定理1 目录 上页 下页 返回 结束 D653高斯公式PPT课件例例1. 用Gauss 公式计算zyxzyyxyxdd)(dd)(其中 为柱面122 yx闭域 的整个边界曲面的外侧. 解解: 这里利用Gauss 公式, 得原式 =zyxzyddd)(zrrzrddd)sin(用柱坐标)zzrrrd)sin(dd30102029x3oz1y,)(xzyP, 0QyxR及平面 z = 0 , z = 3 所围空间思考思考: 若 改为内侧, 结果有何变化? 若

4、为圆柱侧面(取外侧) , 如何计算? 机动 目录 上页 下页 返回 结束 D653高斯公式PPT课件例例2. 利用Gauss 公式计算积分SzyxId)coscoscos(222其中 为锥面222zyxhozyx解解: 作辅助面,:1hz ,:),(222hyxDyxyx取上侧1(I1Szyxd)coscoscos)(2220,21上在介于 z = 0 及 z = h 之间部分的下侧. 1,记h1所围区域为,则 zyxzyxddd)(2yxhyxDdd2机动 目录 上页 下页 返回 结束 D653高斯公式PPT课件zyxzyxIddd)(2利用重心公式, 注意0 yxzyxzddd24hyxh

5、yxDdd2421hhz022zzd4hhozyxh1机动 目录 上页 下页 返回 结束 D653高斯公式PPT课件例例3.dddddd)(2223yxzxxzyzxzyxzxI设 为曲面21,222zyxz取上侧, 求 解解: 作取下侧的辅助面1:1z1:),(22yxDyxyxI11zyxdddyxxdd)(2xyD) 1(20d10dr221drz202dcos103drr12131zoxy211用柱坐标用柱坐标用极坐标用极坐标机动 目录 上页 下页 返回 结束 D653高斯公式PPT课件二、通量与散度二、通量与散度引例引例. 设稳定流动的不可压缩流体的密度为1, 速度场为kzyxRjz

6、yxQizyxPzyxv),(),(),(),(理意义可知, 设 为场中任一有向曲面, yxRxzQzyPdddddd单位时间通过曲面 的流量为 则由对坐标的曲面积分的物 由两类曲面积分的关系, 流量还可表示为SRQPdcoscoscosSnvd机动 目录 上页 下页 返回 结束 D653高斯公式PPT课件方向向外的任一闭曲面 , 记 所围域为, 设 是包含点 M 且为了揭示场内任意点M 处的特性, M在式两边同除以 的体积 V, 并令 以任意方式缩小至点 M 则有),(M记作VMlimzyxzRyQxPVMddd1lim),(limzRyQxPMMzRyQxP此式反应了流速场在点M 的特点:

7、 其值为正,负或 0, 分别反映在该点有流体涌出, 吸入, 或没有任何变化. ),(机动 目录 上页 下页 返回 结束 D653高斯公式PPT课件定义定义: 设有向量场kzyxRjzyxQizyxPzyxA),(),(),(),(其中P, Q, R 具有连续一阶偏导数, 是场内的一片有向 则称曲面, 其单位法向量 n, SnAd为向量场 A 通过有向曲面 的通量(流量) .在场中点 M(x, y, z) 处 称为向量场 A 在点 M 的散度.记作AdivzRyQxP机动 目录 上页 下页 返回 结束 D653高斯公式PPT课件0divA表明该点处有正源, 0divA表明该点处有负源, 0div

8、A表明该点处无源, 散度绝对值的大小反映了源的强度.P16 目录 上页 下页 返回 结束 说明说明: 由引例可知, 散度是通量对体积的变化率, 且D653高斯公式PPT课件内容小结内容小结1. 高斯公式及其应用公式:yxRxzQzyPddddddzyxzRyQxPddd应用:(1) 计算曲面积分 (非闭曲面时注意添加辅助面的技巧)机动 目录 上页 下页 返回 结束 D653高斯公式PPT课件2. 通量与散度 设向量场P, Q, R, 在域G内有一阶 连续 偏导数, 则 向量场通过有向曲面 的通量为 G 内任意点处的散度为 ),(RQPASnAdzRyQxPAdiv机动 目录 上页 下页 返回 结束 D653高斯公式PPT课件思考与练习思考与练习,:2222取外侧设Rzyx所围立体,222zyxr判断下列演算是否正确?(1)yxrzxzryzyrxdddddd333333vRd324 R(2)yxrzxzryzyrxdddddd333333vrzzryyrxxd33333331Ryxzxzyzyxdddddd33331Rvzyxd)(3222 为机动 目录 上页 下页 返回 结束 D653高斯公式PPT课件00cosrn00rn 备用题备用题 设 是一光滑闭曲面,所围立体 的体 是 外法线向量与点 ( x , y

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论