版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、目录 上页 下页 返回 结束 D99二元泰勒公式*第九节一、二元函数泰勒公式一、二元函数泰勒公式 二、极值充分条件的证明二、极值充分条件的证明 二元函数的泰勒公式 第九章 目录 上页 下页 返回 结束 D99二元泰勒公式一、二元函数的泰勒公式一、二元函数的泰勒公式一元函数)(xf的泰勒公式: 20000!2)()()()(hxfhxfxfhxfnnhnxf!)(0)(10) 1(!) 1()(nnhnxxf) 10(推广多元函数泰勒公式 目录 上页 下页 返回 结束 D99二元泰勒公式记号记号 (设下面涉及的偏导数连续): ),()(00yxfykxh),()(002yxfykxh),()(0
2、0yxfykxhm),(),(0000yxfkyxfhyx表示),(),(2),(00200002yxfkyxfkhyxfhyyyxxx),(C000yxyxfkhpmpmpmpmppm 一般地, 表示表示目录 上页 下页 返回 结束 D99二元泰勒公式定理定理1 1.),(),(00yxyxfz在点设的某一邻域内有直到 n + 1 阶连续偏导数 ,),(00kyhx为此邻域内任 一点, 则有),(),(0000yxfkyhxf),()(00yxfkhyx),()(002!21yxfkhyx),()(00!1yxfkhnyxn),()(001! ) 1(1kyhxfkhRnyxnn) 10(n
3、R其中 称为f 在点(x0 , y0 )的 n 阶泰勒公式阶泰勒公式,称为其拉格拉格朗日型余项朗日型余项 .目录 上页 下页 返回 结束 D99二元泰勒公式证证: 令),10(),()(00tktyhtxft则 ),() 1 (, ),()0(0000kyhxfyxf利用多元复合函数求导法则可得: ),(),()(0000t kyt hxfkt kyt hxfhtyx),()()0(00yxfkhyx),()(002t kyt hxfhtxx ),(200t kyt hxfkhyx),(002t kyt hxfkyy),()()0(002yxfkhyx 目录 上页 下页 返回 结束 D99二元
4、泰勒公式),(C)(000)(t kyt hxyxfkhtpmpmpmpmppmm一般地, ),()()0(00)(yxfkhmyxm由 )(t的麦克劳林公式, 得 ) 1 ()() 1(! ) 1(1nn) 10(将前述导数公式代入即得二元函数泰勒公式. )0()0()0()0()(!1!21nn 目录 上页 下页 返回 结束 D99二元泰勒公式),()(001! ) 1(1kyhxfkhRnyxnn说明说明:(1) 余项估计式. 因 f 的各 n+1 阶偏导数连续, 在某闭邻域其绝对值必有上界 M , ,22kh 令则有1)(! ) 1(nnkhnMRsincoskh11)sincos(!
5、 ) 1(nnnM)1(max2 1 , 0 xx利用11)2(! ) 1(nnnM)(no2目录 上页 下页 返回 结束 D99二元泰勒公式(2) 当 n = 0 时, 得二元函数的拉格朗日中值公式:),(),(0000yxfkyhxf),(00kyhxfhx),(00kyhxfky) 10(3) 若函数),(yxfz 在区域D 上的两个一阶偏导数恒为零, .),(常数yxf由中值公式可知在该区域上 目录 上页 下页 返回 结束 D99二元泰勒公式例例1. 求函数)0 , 0()1ln(),(在点yxyxf解解: yxyxfyxfyx11),(),(的三阶泰勒公式. 2)1 (1),(),(
6、),(yxyxfyxfyxfyyyxxx333)1 (!2yxyxfpp)3,2, 1 ,0(p444)1 (!3yxyxfpp)4,3,2, 1 ,0(p因此,)0, 0()(fkhyx)0, 0()0, 0(yxfkfhkh目录 上页 下页 返回 结束 D99二元泰勒公式)0, 0()(2fkhyx)0, 0()(3fkhyx)0, 0()0, 0(2)0, 0(22yyyxxxfkfkhfh)0 , 0(C333303ppppppyxfkh2)(kh3)(2kh,0)0, 0(f又代入三阶泰勒公式得将ykxh,)1ln(yxyx2)(21yx 33)(31Ryx3)1 (!2yx),()
7、,(0000yxfkyhxf),()(00yxfkhyx),()(002!21yxfkhyx),()(003!31yxfkhyx3R其中),()(43khfkhRyx44)1 ()(41yxyxykxh) 10(目录 上页 下页 返回 结束 D99二元泰勒公式时, 具有极值二、极值充分条件的证明二、极值充分条件的证明 的某邻域内具有一阶和二阶连续偏导数, 且令则: 1) 当A 0 时取极小值.2) 当3) 当时, 没有极值.时, 不能确定 , 需另行讨论.若函数的在点),(),(00yxyxfz 0),(,0),(0000yxfyxfyx),(, ),(, ),(000000yxfCyxfBy
8、xfAyyyxxx02BAC02 BAC02BAC定理定理2 (充分条件)目录 上页 下页 返回 结束 D99二元泰勒公式证证: 由二元函数的泰勒公式, 并注意0),(,0),(0000yxfyxfyx则有),(),(0000yxfkyhxfz20021),(hkyhxfxxkhkyhxfyx),(200),(200kkyhxfyy,),(),(00连续的二阶偏导数在点由于yxyxf所以Akyhxfxx),(00Bkyhxfyx),(00Ckyhxfyy),(0000, 0时kh00目录 上页 下页 返回 结束 D99二元泰勒公式22221kCkhBhA其中其中 , , 是当h 0 , k 0
9、 时的无穷小量 ,于是z),(21khQ)(22kh ,很小时因此当kh.),(确定的正负号可由khQz(1) 当 ACB2 0 时, 必有 A0 , 且 A 与C 同号, )()2(),(2222221kBACkBkhBAhAkhQA)()(2221kBACkBhAA可见 ,0),(,0khQA时当从而z0 , 因此),(yxf;),(00有极小值在点yx)(2o22221kkhh目录 上页 下页 返回 结束 D99二元泰勒公式)()(),(2221kBACkBhAkhQA,0),(,0khQA时当从而 z0,在点因此),(yxf;),(00有极大值yx(2) 当 ACB2 0 时, 若A
10、, C不全为零, 无妨设 A0, 则 )(),(221kkBhAkhQA)(2BAC ),(0)()(),(0000yxyyBxxAyx接近沿直线当时, 有,0kBhAAkhQ与故),(异号;),(yx当,),(0000时接近沿直线yxyy,0k有AkhQ与故),(同号.可见 z 在 (x0 , y0) 邻近有正有负, 在点因此),(yxf;),(00无极值yx),(00yxxyO目录 上页 下页 返回 结束 D99二元泰勒公式+若 AC 0 , 则必有 B0 ,不妨设 B0 , 此时 222),(kCkhBhAkhQ),(00kyhx对点,同号时当kh,0),(khQ,异号时当kh,0),(khQ可见 z 在 (x0 , y0) 邻近有正有负, 在点因此),(yxf;),(00无极值yxkhB2,0z从而,0z从而(3) 当ACB2 0 时, 若 A0, 则21)(),(kBhAkh
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 殡葬服务流程与礼仪规范指南
- 医疗废物处理设施设计与运营规范
- 营销策划方案撰写与执行规范
- 餐饮企业厨房管理操作规范
- 食品加工生产线管理规范(标准版)
- 企业创新与研发管理规范
- 国际贸易市场分析与预测指南(标准版)
- 物业管理条例与规范(标准版)
- 企业内部信息安全宣传材料手册
- 金融服务外包业务操作流程手册
- 2026年春苏教版(2026修订)小学数学五年级第二学期教学计划及进度表
- 2026湖南衡阳日报社招聘事业单位人员16人备考题库含答案详解
- 2026时政试卷含答案
- 2025年工程监理招聘面试参考题库及答案
- 提高销售技巧培训
- 《涉外法治概论》课件 杜涛 第7-10章 对外贸易与经济制裁法律制度-涉外应急管理法律制度
- CJ/T 3070-1999城市用水分类标准
- 2025年江西省上饶市中考一模英语试题(含答案无听力原文及音频)
- 地基买卖合同范本
- 企业管理人员法治培训
- (高清版)DB11∕T 1831-2021 装配式建筑评价标准
评论
0/150
提交评论