




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、阻尼最小二乘法(damped least squres,又称LevenbergMarquardt algorithm)the LevenbergMarquardt algorithm (LMA)1provides a numerical solution to the problem of minimizing a function, generally nonlinear, over a space of parameters of the function. These minimization problems arise especially in least squares curv
2、e fitting and nonlinear programming.The LMA interpolates between the GaussNewton algorithm (GNA就是最小二乘) and the method of gradient descent.The LMA is more robust than the GNA, which means that in many cases it finds a solution even if it starts very far off the final minimum. For well-behaved functio
3、ns and reasonable starting parameters, the LMA tends to be a bit slower than the GNA. LMA can also be viewed as GaussNewton using a trust region approach.However, the LMA finds only a local minimum, not a global minimum.这和最小二乘一样。这是所有线性反演的通病。The problemThe primary application of the LevenbergMarquard
4、t algorithm is in the least squares curve fitting problem: given a set of m empirical datum pairs ofindependent and dependent variables, (xi, yi), optimize the parameters of the model curve f(x,) so that the sum of the squares of the deviationsbecomes minimal. The solutionLike other numeric min
5、imization algorithms, the LevenbergMarquardt algorithm is an iterative procedure. To start a minimization, the user has to provide an initial guess for the parameter vector, . In cases with only one minimum, an uninformed standard guess like T=(1,1,.,1) will work fine; in cases with multiple minima,
6、 the algorithm converges only if the initial guess is already somewhat close to the final solution.In each iteration step, the parameter vector, is replaced by a new estimate,+. To determine, the functionsare approximated by their linearizationswhereis the gradient (row-vector in this case) of f wit
7、h respect to .At its minimum, the sum of squares, S(), the gradient of S with respect to will be zero. The above first-order approximation of gives.Or in vector notation,.Taking the derivative with respect to and setting the result to zero gives:where J is the Jacobian matrixwhoseithrow equalsJi,and
8、 where and are vectors with ith component and yi, respectively. This is a set of linear equations which can be solved for.上面是传统的最小二乘法的线性方程。Levenberg's contribution is to replace this equation by a "damped version",where I is the identity matrix, giving as the increment, , to the estima
9、ted parameter vector, .The (non-negative) damping factor, , is adjusted at each iteration. If reduction of S is rapid, a smaller value can be used, bringing the algorithm closer to the GaussNewton algorithm, whereas if an iteration gives insufficient reduction in the residual, can be increased, givi
10、ng a step closer to the gradient descent direction. Note that the gradient of S with respect to equals. Therefore, for large values of , the step will be taken approximately in the direction of the gradient.If either the length of the calculated step, , or the reduction of sum of squares from the la
11、test parameter vector, + , fall below predefined limits, iteration stops and the last parameter vector, , is considered to be the solution.Levenberg's algorithm has the disadvantagethat if the value of damping factor, , is large,JTJ + I is not used at all. Marquardt provided the insigh
12、t that we can scale each component of the gradient according to the curvature so that there is larger movement along the directions where the gradient is smaller. This avoids slow convergence in the direction of small gradient. Therefore, Marquardt replaced the identity matrix,I, with the diagonal m
13、atrix consisting of the diagonal elements ofJTJ, resulting in the LevenbergMarquardt algorithm:.Choice of damping parameterVarious more-or-less heuristic arguments have been put forward for the best choice for the damping parameter . Theoretical arguments exist showing why some of these choices guar
14、anteed local convergence of the algorithm; however these choices can make the global convergence of the algorithm suffer from the undesirable properties of steepest-descent, in particular very slow convergence close to the optimum.The absolute values of any choice depends on how well-scaled the init
15、ial problem is. Marquardt recommended starting with a value 0 and afactor >1. Initially setting =0 and computing the residual sum of squares S() after one step from the starting point with the damping factor of =0 and secondly with 0/. If both of these are worse than the initial point then the da
16、mping is increased by successive multiplication by until a better point is found with a new damping factor of 0k for some k.If use of the damping factor / results in a reduction in squared residual then this is taken as the new value of (and the new optimum location is taken as that obtained with th
17、is damping factor) and the process continues; if using / resulted in a worse residual, but using resulted in a better residual then is left unchanged and the new optimum is taken as the value obtained with as damping factor. ExampleIn this example we try to fit the function y = acos(bX) + bsin(
18、aX) using the LevenbergMarquardt algorithm implemented in GNU Octave as the leasqr function.The 3 graphs Fig 1,2,3 show progressively better fitting for the parameters a=100, b=102 used in the initial curve. Only when the parameters in Fig 3 are chosen closest to the original, are the curves fitting exactly. This equation isan example of very sensitive initial conditions for the LevenbergMarquardt algorithm. One reason for this sensitivity is the existence of multiple minima the function cos(x) has minima at parameter value and
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年智能网联汽车燃料电池管理技术考核试卷
- 难点解析-人教版八年级物理上册第5章透镜及其应用综合测试试题(含详解)
- 2025年新能源行业储能系统锂电池双碳目标政策合规考核试卷
- 2025年数据库系统工程师《大数据处理技术》混合云环境下分布式数据库部署策略考核试卷
- 解析卷-人教版八年级上册物理《物态变化》章节练习试卷(含答案解析)
- 考点解析人教版八年级物理上册第5章透镜及其应用-生活中的透镜专题测评试卷(详解版)
- 考点解析-人教版八年级物理上册第6章质量与密度-密度综合练习试题(解析版)
- 考点解析人教版八年级物理上册第4章光现象-光的色散综合练习试卷(含答案详解)
- 全体教师大会上副校长讲话:警惕!7个教学环节正在吞噬课堂质量-从备课到教研的破局之道
- 2024年船舶尾气排放监测技术考核试卷
- 2024-2025学年广东省深圳市高二上学期第一次月考数学检测试题(含解析)
- 【MOOC】中国传统艺术-篆刻、书法、水墨画体验与欣赏-哈尔滨工业大学 中国大学慕课MOOC答案
- 2024-2025华为ICT大赛(实践赛)-网络赛道理论考试题库大全-中(多选题)
- 数据中心运维服务投标方案
- 语文-安徽省鼎尖名校(安徽小高考)2025届高三11月联考试卷和答案
- 膜结构车棚施工方案
- 《浅论鲁迅小说中塑造的女性形象》11000字(论文)
- 2025年九省联考新高考 物理试卷(含答案解析)
- 北师大版五年级上册数学全册单元教材分析
- 环境卫生学-练习题(有答案)
- 二次结构阶段危险源清单(房建)
评论
0/150
提交评论