双曲线及其标准方程(带动画)很好02998_第1页
双曲线及其标准方程(带动画)很好02998_第2页
双曲线及其标准方程(带动画)很好02998_第3页
双曲线及其标准方程(带动画)很好02998_第4页
双曲线及其标准方程(带动画)很好02998_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 巴西利亚大教堂巴西利亚大教堂北京摩天大楼北京摩天大楼法拉利主题公园法拉利主题公园花瓶花瓶1.回顾椭圆的定义?回顾椭圆的定义?1F2F 0, c 0, cXYO yxM,探索研究平面内与两个定点平面内与两个定点F1、F2的的距离的和距离的和等于常数(大于等于常数(大于F1F2)的点轨迹叫做椭圆。)的点轨迹叫做椭圆。思考:如果把椭圆定义中的“距离之和”改为“距离之差”,那么动点的轨迹会是怎样的曲线?即“平面内与两个定点F1、F2的距离的差等于常数的点的轨迹 ”是什么?画双曲线画双曲线演示实验:用拉链画双曲线演示实验:用拉链画双曲线根据实验及椭圆定义,你能给双曲线下定义吗?根据实验及椭圆定义,你能

2、给双曲线下定义吗? 平面内与两个定点平面内与两个定点F1,F2的距离的和为一个定的距离的和为一个定值(大于值(大于F1F2 )的点的轨迹叫做椭圆)的点的轨迹叫做椭圆 两个定点两个定点F1、F2双曲线的双曲线的焦点焦点; |F1F2|=2c 焦距焦距. 平面内与两个定点平面内与两个定点F1,F2的距离的的距离的差差的绝对值的绝对值等于常数等于常数 (小于(小于F1F2) 的点的轨迹叫做的点的轨迹叫做双曲线双曲线.注意注意| |MF1| - |MF2| | = 2a(1)(1)距离之差的距离之差的绝对值绝对值(2)(2)常数常数要要大于大于0 0小于小于|F1F2|F1F2|02a|F| |F1

3、1F F2 2| |F F2 2F F1 1P PMQ QM 是不可能的,因为三角是不可能的,因为三角形两边之差小于第三边。此时无轨迹。形两边之差小于第三边。此时无轨迹。此时点的轨迹是线段此时点的轨迹是线段F F1 1F F2 2的垂直平的垂直平分线。分线。则则|MF|MF1 1|=|MF|=|MF2 2| |F1F2M常数等于常数等于0 0时时若常数若常数2a= |MF2a= |MF1 1| |MF|MF2 2| =0| =0 xyo设设M(x , y),双曲线的焦双曲线的焦距为距为2c(c0),F1(-c,0),F2(c,0)F1F2M即即 (x+c)2 + y2 - (x-c)2 + y

4、2 = + 2a_以以F1,F2所在的直线为所在的直线为X轴,轴,线段线段F1F2的中点为原点建立直角坐的中点为原点建立直角坐标系标系1. 建系建系. .2.设点设点3.列式列式|MF1| - |MF2|= 2a如何求这优美的曲线的方程?如何求这优美的曲线的方程?4.4.化简化简. .3.3.双曲线的标准方程双曲线的标准方程2222(xc)y(xc)y2a 22 2222( (xc)y )( (xc)y2a)222cxaa (xc)y 22222222(ca )xa ya (ca )令令c c2 2a a2 2=b=b2 22222xy1abyoF1M12222byax12222bxayF2

5、2F1 1MxOyOMF2F1xy222(00)=abab,并c且双曲线的标准方程双曲线的标准方程焦点在焦点在x轴上轴上焦点在焦点在y轴上轴上双曲线定义及标准方程双曲线定义及标准方程222bac | |MF1|- -|MF2| | =2a( 2a0,b0,但,但a不一不一定大于定大于b,c2=a2+b2ab0,a2=b2+c2|MF1|MF2|=2a |MF1|+|MF2|=2a 椭椭 圆圆双曲线双曲线F(0,c)F(0,c)22221(0)xyabab22221(0)yxabab22221(0,0)xyabab22221(0,0)yxabab小结小结 -双曲线定义及标准方程双曲线定义及标准方程222bac | |M

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论