


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、24.4 弧长和扇形面积(第1课时) 教学目标了解扇形的概念,理解n°的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用 通过复习圆的周长、圆的面积公式,探索n°的圆心角所对的弧长L=和扇形面积S扇=的计算公式,并应用这些公式解决一些题目 重难点、关键 1重点:n°的圆心角所对的弧长L=,扇形面积S扇=及其它们的应用 2难点:两个公式的应用 3关键:由圆的周长和面积迁移到弧长和扇形面积公式的过程 教具、学具准备 小黑板、圆规、直尺、量角器、纸板 教学过程 一、复习引入 1圆的周长公式是什么? 2圆的面积公式是什么? 3什么叫弧长? 二、探索新知 (小黑板)
2、请同学们独立完成下题:设圆的半径为R,则: 1圆的周长可以看作_度的圆心角所对的弧 21°的圆心角所对的弧长是_ 32°的圆心角所对的弧长是_ 44°的圆心角所对的弧长是_ 5n°的圆心角所对的弧长是_例1制作弯形管道时,需要先按中心线计算“展直长度”再下料,试计算如图所示的管道的展直长度,即的长(结果精确到0.1mm)分析:要求的弧长,圆心角知,半径知,只要代入弧长公式即可 解:新 课标 第 一网问题:(学生分组讨论)在一块空旷的草地上有一根柱子,柱子上拴着一条长5m的绳子,绳子的另一端拴着一头牛,如图所示: (1)这头牛吃草的最大活动区域有多大? (
3、2)如果这头牛只能绕柱子转过n°角,那么它的最大活动区域有多大? 学生提问后,老师点评:(1)这头牛吃草的最大活动区域是一个以A(柱子)为圆心,5m为半径的圆的面积(2)如果这头牛只能绕柱子转过n°角,那么它的最大活动区域应该是n°圆心角的两个半径的n°圆心角所对的弧所围成的圆的一部分的图形,如图: 像这样,由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形 (小黑板),请同学们结合圆心面积S=R2的公式,独立完成下题: 1该图的面积可以看作是_度的圆心角所对的扇形的面积 2设圆的半径为R,1°的圆心角所对的扇形面积S扇形=_ 3设圆的
4、半径为R,2°的圆心角所对的扇形面积S扇形=_ 4设圆的半径为R,5°的圆心角所对的扇形面积S扇形=_ 5设圆半径为R,n°的圆心角所对的扇形面积S扇形=_ 因此:在半径为R的圆中,圆心角n°的扇形S扇形=例2如图,已知扇形AOB的半径为10,AOB=60°,求的长(结果精确到01)和扇形AOB的面积结果精确到01) 分析:要求弧长和扇形面积,只要有圆心角,半径的已知量便可求,本题已满足 解: 三、巩固练习 课本P122练习 五、归纳小结(学生小结,老师点评)第一课时作业设计一、 选择题1已知扇形的圆心角为120°,半径为6,则扇形的
5、弧长是( ) A3 B4 C5 D6 2如图1所示,把边长为2的正方形ABCD的一边放在定直线L上,按顺时针方向绕点D旋转到如图的位置,则点B运动到点B所经过的路线长度为( )A1 B C D (1) (2) (3) 3如图2所示,实数部分是半径为9m的两条等弧组成的游泳池,若每条弧所在的圆都经过另一个圆的圆心,则游泳池的周长为( )A12m B18m C20m D24m 二、填空题 1如果一条弧长等于R,它的半径是R,那么这条弧所对的圆心角度数为_, 当圆心角增加30°时,这条弧长增加_2如图3所示,OA=30B,则的长是的长的_倍 三、综合提高题1已知如图所示,所在圆的半径为R,的长为R,O和OA、OB分别相切于点C、E,且与O内切于点D,求O的周长
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医护人员职业道德培养的策略与实践
- 医院安全管理体系的构建与实施
- 区块链在提升供应链透明度中的实践报告
- 囊肿的临床护理
- 医疗APP的用户行为模式研究及商业价值挖掘
- 企业生产经营贷款合同范例
- 区块链技术革新商业地产管理的未来趋势
- 医学人文素质教育的国际化视野与发展趋势
- 医疗大数据的隐私保护技术进展
- 中标挂钩合同范例
- 辽宁省名校联盟2025年高三5月份联合考试语文及答案
- 贵港辅警考试题库2024
- 医务科依法执业自查表
- 肿瘤个体化治疗检测技术指南(试行)
- 排球战术分析课件
- 1.咨询服务流程图(通用)
- 8 泵站设备安装工程单元工程质量验收评定表及填表说明
- 学习“建设生态环境保护铁军的基本要求”心得体会1
- 梁若瑜著-十二宫六七二象书增注版
- 防洪堤初步设计报告
- 重力卫星测量解析PPT课件
评论
0/150
提交评论