版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、钠离子电池近年来,随着电子设备、电动工具、小功率电动汽车等迅猛发展, 研究高能效、资源丰富及环境友好的储能材料是人类社会实现可持续 性发展的必要条件。为满足规模庞大的市场需求,仅依靠能量密度、 充放电倍率等性能衡量电池材料是远远不够的。电池的制造成本与能耗是否对环境造成污染以及资源的回收利用率也将成为评价电池材 料的重要指标。电池发展有以下显著特点 :绿色环保电池发展迅猛;一 次电池向二次电池转化,这有利于节约地球有限的资源,符合可持续发 展的战略;电池进一步向小、轻、薄方向发展。钠是地球上储量较丰富的元素之一,与锂的化学性能类似,因此也可能适用于锂离子电池体系。钠离子电池相比锂离子电池有诸多
2、优 势,如成本低,安全性好,随着研究的深入,钠离子电池将越来越具 有成本效益,并有望在未来取代锂离子电池而被广泛应用。1钠离子电池电化学原理同为元素周期表第I主族的钠离子和锂离子的性质有许多相似之 处,钠离子完全有可能和锂离子电池一样构造一种广泛使用的二次电 池。并且钠离子电池与锂离子电池相比,原材料成本比锂离子电池低, 半电池电位(E°Na+/Na = E°Li+/Li +0.3)比锂离子电池高,适合采用分解电压 更低的电解液,因而安全性能更佳。钠离子电池不以钠作为负极,而 是由硬碳或嵌入化合物组成。钠离子电池实际上是一种浓差电池,正负极由两种不同 的钠离子嵌入化合物组成
3、。充电时,Ner从正极脱嵌经过电解 质朕入负极,负极处丁富钠态,正极处丁"贫钠态,同时电子的 补偿电荷经外电路供给到极,保证正负极电荷平衡。放电吋则 相反,N少从负极脱嵌,经过电解质嵌入正极,正极处于处于 富钠态口=钠离了电池工作原理示意图(1) 钠离子电池优点:依据目前的研究进展,钠离子电池与锂离子电池相比有3个突出优势:原料资源丰富,成本低廉,分布广 泛;钠离子电池的半电池电势较锂离子电势高0.30.4 V,即能利用分解电势更低的电解质溶剂及电解质盐,电解质的选择范围更宽; 钠离子电池有相对稳定的电化学性能,使用更加安全。(2) 钠离子电池缺陷:钠离子电池也存在着缺陷,如钠元素的
4、相对原子质量比锂高很多,导致理论比容量小,不足锂的1/2;钠离子半径比锂离子半径大 (Na+半径:95pm, Li+半径:60pm),使得钠 离子在电池材料中嵌入与脱出更难。下图为钠离子电池的电极材料:5055050544- 0Na J;cP( )J;xNaMiiOiNaMoOjPNaTi2(PO|)rMM.1E极材料$1极材料 >-MrS7M.Scr"诃纭刑gd严皿5阻c悭II.II一50100150200250300比容 S/mAh-g-1图1钠离子电池正负极材料的电压与比容暈的关系A®2钠离子电池正极材料用于钠离子电池正极的材料主要有贫钠的NaxCoO?、Na&
5、lt;MnO2层状晶体化合物及它们的掺杂化合物。这些化合物的存在形态取决于其组成(x值)和制备方法。其它一些见诸报道的嵌入式正极材料有:NaxTiS2,NaxNbS2CI2,NaxWO3-y,NaxV0.5Cr0.5S,NaxMoS3(非定 形),NaxTaS2各式中 0<x<2,0vyv1。2.1五氧化二钒(V2O5)五氧化二钒(V2O5)是阿贡国家实验室和芝加哥大学的研究小组 开发的一种可用于充电钠离子电池的正极材料。这种双层五氧化二钒(V2O5)材料可用于室温下,具有 250mAh/g的比容量,接近理论比容 量,倍率放电能力和循环寿命优良,电池的比能量和比功率高达760Wh/
6、kg和1200W/kg。用双层V2O5材料作钠离子电池正极的充放电反应机理如图所示,电化学反应改变了五氧化二钒层的静电吸引力,可为钠离子(Na+)提供强大的迁移动力;钠离子嵌入到V2O5的过程如图所示。用双层V3O?系统作正极的充放电反应机理图3钠离子V;0,的过程由图上可以看出,钠离子的嵌入可导致钒的整体结构有序化,同时层间长程有序。钠脱出后,这种长程有序也消失,而层内结构仍保 存着。这个研究小组的方法是,要使钠离子嵌入,就要使用纳米材料, 这种材料具有双层层状结构,可调层间距,能适应很大的体积变化。 非原位和原位同步特性研究表明,钠离子的嵌入可导致钒的整体结构 有序化,同时层间长程有序。钠
7、脱出后,这种长程有序也消失, 而层 内结构仍保存着。因此,通过优化平衡静电力,诱导纳米材料的排列, 会取得尽可能高的电极容量。这种开放式框架结构具有好的“弹性” 和卓越的长期稳定性,可使双层五氧化二钒成为一种合适的可用于高 能量密度钠充电电池的正极材料。2.2单晶Nao.44MnO2纳米线高功率钠离子蓄电池近年来吸引了越来越多人的兴趣,因此,急需开发一种纳米结构的电极材料,因为纳米材料具有很高的比表面 积,缩短了钠离子的扩散距离,所以使电池具有高的功率密度。用水热法合成的单晶N比.44MnO2纳米线,可用于钠离子电池。将 0.1g的 Mn3O4粉末分散在 NaOH溶液中(40ml/5mol/l
8、),然后将溶液放在 Teflon-lined高压锅(45ml)中,在205C加热96h。之后,冷却反应 物,过滤沉淀物,用水反复冲洗,然后在室温下真空干燥。SEM和TEM实验证明水热法合成 NaMnO2具有单晶纳米线形貌。实验证 明,该材料的可逆比容量为120mAh/g。另外,单晶N%44MnO2纳米 线具有高的充放电倍率循环性能和循环稳定性,因此是一种非常有前途的钠离子电池正极材料。2.3可逆NaFePQ电极通过置换橄榄石LiFePO4中Li的置换可获得橄榄石型 NaFePQ 正极。实验证明橄榄石型NaFePQ电极是一种非常有潜力的钠离子 电池电极材料。这种材料中,理论比容量最大的为橄榄石结
9、构 NaFePO4,为 154 mA h/g。但和 LiFePO4 的不同点是,NaFePO4 最稳定存在的相是磷铁钠矿结构,该结构 Na+占据4c的Wyckoff 点阵位置,Fe2+占据4a点阵位置。这点刚好与 LiFePO4相反,Li+ 占据4a位置,Fe2+占据4c位置。导致这种结构差异的可能原因是 Na离子半径比 Li大。NaFePO4材料在60 C, C/24倍率下,充 放电的首次比容量达到 147 mA h/g。但这种材料到目前为止没有得 到良好的循环性能,有待更多的深入研究。2.4 NaxCoO2及其参杂化合物在NaxCoO2化合物中,Na+主要位于层状(CoO2)n八面体之间:
10、数 量少时,钠离子间呈三棱柱状排列;数量多时,它们则配位成八面体。尽 管NaxCoO2化合物电性能较优,但钻盐价格昂贵,使得电池成本大幅 上升,故出现了其它各种替代材料。2.5 NaxM n02及其参杂化合物3钠离子电池的负极材料3.1碳材料用石墨作负极,由于钠离子在石墨层间迁移需要高跃迁能,脱/嵌困难。钠金属会形成枝晶,如锂金属一样。钠金属的安全性也受到 质疑,因为其熔点只有97.7C,而锂金属为180.5G硬碳被认为可以 作为负极材料,钠合金是否能作为负极材料也正被广泛的研究。在实验室中应用较多的钠离子电极负极材料有各类碳材料,如石墨,乙炔黑,中间相碳微球(MCMB),它们的电化学性能与各
11、自的结构和 含氢量密切相关,一般的规律是:晶粒小,比表面积大,与电解质接触面也大,从而用来形成保护层所消耗的电解质也多;而含氢量越多,容量滞后也越大。中间相碳微球(MCMB)的制备及其电化学性能已有详细的研究,与不经处理和经高温(3 000C)处理的MCMB相比,750C热处理后的 MCMB电化学性能最优,这是因为它未完全失氢和适中的石墨化程 度。报道称其比容量达750mAh/g,为石墨理论比容量372mAh/g(NaC6) 的两倍多;石墨化缺陷则避免了无谓的有机溶剂分解,又是低温制备, 可见,这是一种较为理想的负极材料。3.2合金另一类重要的负极材料是钠合金,其制备是将单质钠与其它金属 按一
12、定比例在惰性气氛中于合适温度下熔融,再经退火结晶即可。目前研究较多的是钠的二元与三元合金,可与钠制成负极用合金的元素 有:Pb,Sn,Bi,Ga,Ce,Si等,选择这些金属的原因是:可增加负极材料与电 解质的相容性,防止在过充电时生成枝晶,增加了安全性,故能延长电 池的使用寿命;且它们氢过电位较高,能减少电池的自放电反应,从而 提高电池的贮存性能。合金负极的缺点是降低了比能量,如 Na15Pb4/P2NaxCoO2系统为 350Wh/kg,是 Na/P2 NaxCoO2系统的 3/4 左右,但其高体积比能量仍然很有吸引力(Na15Pb4/P2 NaxCoO21500Wh/L,与 Na/P2 N
13、axCoO21600 Wh/L接近)。另外,出于环 保考虑,应尽量避免使用重金属(如Pb)作为钠的合金化元素。有学者 对利用高分子掺杂以改变合金晶型以及提高其比容量作了相应的研3.3金属氧化物材料4电解质按其存在状态讲,钠离子二次电池的电解质有液态和固态两类之 分。与锂离子二次电池相似,用于钠离子电池的液态电解质也是由钠 盐溶于有机溶剂中,钠盐一般可以 为:NaPF6,Na-CIO4,NaAICl4,NaFeCl4,NaSQCF3,NaBF4,NaBCl4,NaNO3, NaPOF4,NaSCN,NaCN,NaAsF6,NaCF3CO2,NaSbF6,NaC6H5CO2,Na(CH3 )C6H
14、4SO3,NaHSO4,NaB(C6H5)4等等;对有机溶剂则有以下要求:介电常 数大,熔点低(常温时为液态),钠离子导电能力强。为满足前叙几点要 求,电解质溶剂一般为无水二元组分,其成分可以是碳酸乙烯酯(EC), 碳酸丙烯酯(PC),碳酸二乙酯(DEC),1,2-二甲氧基乙烷(DME),四氢咲 喃(THF),2-甲基四氢咲喃(2-MTHF)等。在最终配制成的电解质中,Na+ 摩尔浓度以1mol/L左右为宜。液态电解质配置要求高(无水)、易泄漏、不安全(如造成单质金属 负极生成枝晶,导致电池内部短路而发生爆炸)。特别是以单质钠为电 池负极材料时,它与液态电解质间的反应造成该类电池发展困难。使
15、用合金负极是一种方案,但合金中钠离子扩散困难,而且在多次循环之 后,其体积有显著变化。另外一种解决方案是改进电解质,即在选择适当溶剂的同时,加入添加剂。但人们也在寻找新型电解质材料 ,近年来 发展较快的聚合物电解质就是一个典型的例子。一般来讲,所谓聚合物电解质就是将盐类物质以掺杂的形式混入聚合物制成导电(主要是 离子导电)的高分子。常见的用作固体聚合物电解质(Solid Polymer Electrolyte,SPE)的 高聚物有聚氧化乙烯、聚苯胺、聚吡咯、乙烯丙烯酸共聚物、聚四氟 物等,按高聚物的构型不同,它们可分别形成线形高分子电解质、梳状 高分子电解质、交联网络高分子电解质等不同种类的聚
16、合物电解质。 碱金属盐则有 Nal、NaBH4、NaBF4以及聚磷酸钠等,它们一般都有 带负电荷的大体积阴离子。将来开发新盐时可考虑:有宽的电化学窗,与聚合物基体形成低共熔复合材料,阴离子结构对称或柔顺, 有增塑作用。这类高分子复合材料的导电性可能是导电通道、隧道效应和场致发射三种机理作用的竞争结果。而已发现的PEO-NaBH4体系中,由于阴离子配对的阻碍作用,降低了离子导电性。为满足充电电 池的导电需要 应要求SPE的离子导电性在10-3S/cm以上。然而在盐 类掺杂后所获得的固态聚合物电解质的离子导电性能尚不能达到这 一水平。因此,今后这方面的研究工作应侧重于开发出对正、负极材 料具有稳定
17、性的同时又具有较高的离子导电性的固体聚合物电解质。Nasicon也是近十几年发展起来的一种钠离子导体,它是由钠、锆、 硅、磷、氧 5种元素构成的复合电解质。美国专利曾报导用 Na3Zr2Si2PO12粉末与Teflon混合可制得极薄固体电解质。常见的硫 酸钠基固体电解质与 Na3x+2y+zPxOyClz(OWx,y,z< 1;x,y,z中仅一个 为0)也是中高温使用的快离子导体。要想用于新型二次钠离子电池,这类固态电解质应在常温下就具有较高的离子导电性,而且制备容易。SiO2骨架三维空间钠离子导体的研制成功已向这一目标靠近,但尚未在钠离子电池中得到应用那电池:钠电池有钠硫电池、 钠盐电
18、池、钠空气电池、有机系钠离子 电池、水系钠离子电池等。(1)钠硫电池:它以熔融的液态金属钠(Na)和单质硫(S)分别 用作负极和正极的活性物质,以固态的Beta-ALOs陶瓷作为隔膜和电 解质。钠硫电池的比能量(即电池单位质量或单位体积所能存储的能 量)高,其理论比能量为 760W-h/kg,实际已经超过150W-h/kg,是 铅酸电池的3-4倍。钠硫电池需要较高的运行温度(300-400C)。(2)钠盐电池:钠盐电池包括液态的钠负极、金属氯化材料 (NiCI 2和少量FeC2)的正极以及钠离子导体 Beta-Al2O3陶瓷电解质。 在放电过程中金属钠负极被氧化产生的钠离子通过钠离子导体 Beta-Al2O3固态钠电解质以及由氯化钠和三氯化铝混合熔液组成的次级电解液到达NiCJ正极,充电过程则相反。(3)钠空气电池:钠空气电池属于金属-空气电池体系,通过在空气电极上使碱金属离子和氧气发生反应来产生碱金属氧化物来驱 动整个电池工作。正极通常采用多孔碳材料或多孔金属材料,不仅为氧气的传输提供通道,更为氧气的还原以及与碱金属离子结合生成碱 金氧化物提供反应场地。在放电的过程中生成的碱金属氧化物会不断 填充这些多孔材料的空隙,直到空隙被完全填满放电反应才会终止。(4) 有机系钠离子电池:钠离子电池和锂离子电池的组成一样,包括正极、负极、隔膜和电解液"钠离子电池不采用钠作为负极
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 我国上市公司盈余管理方法的多维度解析与治理路径探究
- 名著的英语介绍
- 钼铁冶炼工成果转化知识考核试卷含答案
- 水盆工安全规程评优考核试卷含答案
- 金属材热处理工成果知识考核试卷含答案
- 井下钻机司机安全实践能力考核试卷含答案
- 栓皮制品工操作评估模拟考核试卷含答案
- 老年精准健康管理政策支持:公卫服务纳入
- 甲基叔丁基醚丁烯-1装置操作工安全宣传考核试卷含答案
- 老年神经外科手术的神经保护考量
- 2025年全国职业院校技能大赛高职组(研学旅行赛项)考试题库(含答案)
- 创意文案写作技巧与实战案例
- 糖尿病足康复疗法及护理措施
- 生猪屠宰溯源信息化管理系统建设方案书
- 厂区景观设计合同范本
- 颅内压增高患者的观察与护理
- 渔民出海前安全培训课件
- 重难点练02 古诗文对比阅读(新题型新考法)-2024年中考语文专练(上海专用)(解析版)
- 湖南雅礼高一数学试卷
- 门岗应急预案管理办法
- 幼儿阶段口才能力培养课程设计
评论
0/150
提交评论